This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero scalars create nonzero polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| ply1scl.a | |- A = ( algSc ` P ) |
||
| ply1scl0.z | |- .0. = ( 0g ` R ) |
||
| ply1scl0.y | |- Y = ( 0g ` P ) |
||
| ply1scln0.k | |- K = ( Base ` R ) |
||
| Assertion | ply1scln0 | |- ( ( R e. Ring /\ X e. K /\ X =/= .0. ) -> ( A ` X ) =/= Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1scl.a | |- A = ( algSc ` P ) |
|
| 3 | ply1scl0.z | |- .0. = ( 0g ` R ) |
|
| 4 | ply1scl0.y | |- Y = ( 0g ` P ) |
|
| 5 | ply1scln0.k | |- K = ( Base ` R ) |
|
| 6 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 7 | 1 2 5 6 | ply1sclf1 | |- ( R e. Ring -> A : K -1-1-> ( Base ` P ) ) |
| 8 | 7 | adantr | |- ( ( R e. Ring /\ X e. K ) -> A : K -1-1-> ( Base ` P ) ) |
| 9 | simpr | |- ( ( R e. Ring /\ X e. K ) -> X e. K ) |
|
| 10 | 5 3 | ring0cl | |- ( R e. Ring -> .0. e. K ) |
| 11 | 10 | adantr | |- ( ( R e. Ring /\ X e. K ) -> .0. e. K ) |
| 12 | f1fveq | |- ( ( A : K -1-1-> ( Base ` P ) /\ ( X e. K /\ .0. e. K ) ) -> ( ( A ` X ) = ( A ` .0. ) <-> X = .0. ) ) |
|
| 13 | 8 9 11 12 | syl12anc | |- ( ( R e. Ring /\ X e. K ) -> ( ( A ` X ) = ( A ` .0. ) <-> X = .0. ) ) |
| 14 | 13 | biimpd | |- ( ( R e. Ring /\ X e. K ) -> ( ( A ` X ) = ( A ` .0. ) -> X = .0. ) ) |
| 15 | 14 | necon3d | |- ( ( R e. Ring /\ X e. K ) -> ( X =/= .0. -> ( A ` X ) =/= ( A ` .0. ) ) ) |
| 16 | 15 | 3impia | |- ( ( R e. Ring /\ X e. K /\ X =/= .0. ) -> ( A ` X ) =/= ( A ` .0. ) ) |
| 17 | 1 2 3 4 | ply1scl0 | |- ( R e. Ring -> ( A ` .0. ) = Y ) |
| 18 | 17 | 3ad2ant1 | |- ( ( R e. Ring /\ X e. K /\ X =/= .0. ) -> ( A ` .0. ) = Y ) |
| 19 | 16 18 | neeqtrd | |- ( ( R e. Ring /\ X e. K /\ X =/= .0. ) -> ( A ` X ) =/= Y ) |