This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ply1scl1 as of 12-Mar-2025. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| ply1scl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| ply1scl0.y | ⊢ 𝑌 = ( 0g ‘ 𝑃 ) | ||
| Assertion | ply1scl0OLD | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 3 | ply1scl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | ply1scl0.y | ⊢ 𝑌 = ( 0g ‘ 𝑃 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 5 3 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 7 | 1 | ply1sca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |
| 8 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 9 | 8 5 | strfvi | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) |
| 10 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 11 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 12 | 2 7 9 10 11 | asclval | ⊢ ( 0 ∈ ( Base ‘ 𝑅 ) → ( 𝐴 ‘ 0 ) = ( 0 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 13 | 6 12 | syl | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = ( 0 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 14 | fvi | ⊢ ( 𝑅 ∈ Ring → ( I ‘ 𝑅 ) = 𝑅 ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑅 ∈ Ring → ( 0g ‘ ( I ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 16 | 3 15 | eqtr4id | ⊢ ( 𝑅 ∈ Ring → 0 = ( 0g ‘ ( I ‘ 𝑅 ) ) ) |
| 17 | 16 | oveq1d | ⊢ ( 𝑅 ∈ Ring → ( 0 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 18 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 19 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 21 | 20 11 | ringidcl | ⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 22 | 19 21 | syl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 23 | eqid | ⊢ ( 0g ‘ ( I ‘ 𝑅 ) ) = ( 0g ‘ ( I ‘ 𝑅 ) ) | |
| 24 | 20 7 10 23 4 | lmod0vs | ⊢ ( ( 𝑃 ∈ LMod ∧ ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = 𝑌 ) |
| 25 | 18 22 24 | syl2anc | ⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = 𝑌 ) |
| 26 | 13 17 25 | 3eqtrd | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = 𝑌 ) |