This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1lmod.p | |- P = ( Poly1 ` R ) |
|
| Assertion | ply1sca2 | |- ( _I ` R ) = ( Scalar ` P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1lmod.p | |- P = ( Poly1 ` R ) |
|
| 2 | fvi | |- ( R e. _V -> ( _I ` R ) = R ) |
|
| 3 | 1 | ply1sca | |- ( R e. _V -> R = ( Scalar ` P ) ) |
| 4 | 2 3 | eqtrd | |- ( R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) |
| 5 | fvprc | |- ( -. R e. _V -> ( _I ` R ) = (/) ) |
|
| 6 | fvprc | |- ( -. R e. _V -> ( Poly1 ` R ) = (/) ) |
|
| 7 | 6 | fveq2d | |- ( -. R e. _V -> ( Scalar ` ( Poly1 ` R ) ) = ( Scalar ` (/) ) ) |
| 8 | 1 | fveq2i | |- ( Scalar ` P ) = ( Scalar ` ( Poly1 ` R ) ) |
| 9 | scaid | |- Scalar = Slot ( Scalar ` ndx ) |
|
| 10 | 9 | str0 | |- (/) = ( Scalar ` (/) ) |
| 11 | 7 8 10 | 3eqtr4g | |- ( -. R e. _V -> ( Scalar ` P ) = (/) ) |
| 12 | 5 11 | eqtr4d | |- ( -. R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) |
| 13 | 4 12 | pm2.61i | |- ( _I ` R ) = ( Scalar ` P ) |