This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of a vector from itself. (Contributed by NM, 30-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubid | |- ( A e. ~H -> ( A -h A ) = 0h ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hvmulid | |- ( A e. ~H -> ( 1 .h A ) = A ) |
|
| 2 | 1 | oveq1d | |- ( A e. ~H -> ( ( 1 .h A ) +h ( -u 1 .h A ) ) = ( A +h ( -u 1 .h A ) ) ) |
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | ax-hvdistr2 | |- ( ( 1 e. CC /\ -u 1 e. CC /\ A e. ~H ) -> ( ( 1 + -u 1 ) .h A ) = ( ( 1 .h A ) +h ( -u 1 .h A ) ) ) |
|
| 6 | 3 4 5 | mp3an12 | |- ( A e. ~H -> ( ( 1 + -u 1 ) .h A ) = ( ( 1 .h A ) +h ( -u 1 .h A ) ) ) |
| 7 | hvsubval | |- ( ( A e. ~H /\ A e. ~H ) -> ( A -h A ) = ( A +h ( -u 1 .h A ) ) ) |
|
| 8 | 7 | anidms | |- ( A e. ~H -> ( A -h A ) = ( A +h ( -u 1 .h A ) ) ) |
| 9 | 2 6 8 | 3eqtr4rd | |- ( A e. ~H -> ( A -h A ) = ( ( 1 + -u 1 ) .h A ) ) |
| 10 | 1pneg1e0 | |- ( 1 + -u 1 ) = 0 |
|
| 11 | 10 | oveq1i | |- ( ( 1 + -u 1 ) .h A ) = ( 0 .h A ) |
| 12 | 9 11 | eqtrdi | |- ( A e. ~H -> ( A -h A ) = ( 0 .h A ) ) |
| 13 | ax-hvmul0 | |- ( A e. ~H -> ( 0 .h A ) = 0h ) |
|
| 14 | 12 13 | eqtrd | |- ( A e. ~H -> ( A -h A ) = 0h ) |