This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvass.1 | |- A e. ~H |
|
| hvass.2 | |- B e. ~H |
||
| hvass.3 | |- C e. ~H |
||
| hvadd4.4 | |- D e. ~H |
||
| Assertion | hvsubsub4i | |- ( ( A -h B ) -h ( C -h D ) ) = ( ( A -h C ) -h ( B -h D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvass.1 | |- A e. ~H |
|
| 2 | hvass.2 | |- B e. ~H |
|
| 3 | hvass.3 | |- C e. ~H |
|
| 4 | hvadd4.4 | |- D e. ~H |
|
| 5 | neg1cn | |- -u 1 e. CC |
|
| 6 | 5 2 | hvmulcli | |- ( -u 1 .h B ) e. ~H |
| 7 | 5 3 | hvmulcli | |- ( -u 1 .h C ) e. ~H |
| 8 | 5 4 | hvmulcli | |- ( -u 1 .h D ) e. ~H |
| 9 | 5 8 | hvmulcli | |- ( -u 1 .h ( -u 1 .h D ) ) e. ~H |
| 10 | 1 6 7 9 | hvadd4i | |- ( ( A +h ( -u 1 .h B ) ) +h ( ( -u 1 .h C ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( ( -u 1 .h B ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) |
| 11 | 5 3 8 | hvdistr1i | |- ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) = ( ( -u 1 .h C ) +h ( -u 1 .h ( -u 1 .h D ) ) ) |
| 12 | 11 | oveq2i | |- ( ( A +h ( -u 1 .h B ) ) +h ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h B ) ) +h ( ( -u 1 .h C ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) |
| 13 | 5 2 8 | hvdistr1i | |- ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) = ( ( -u 1 .h B ) +h ( -u 1 .h ( -u 1 .h D ) ) ) |
| 14 | 13 | oveq2i | |- ( ( A +h ( -u 1 .h C ) ) +h ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( ( -u 1 .h B ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) |
| 15 | 10 12 14 | 3eqtr4i | |- ( ( A +h ( -u 1 .h B ) ) +h ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) ) |
| 16 | 1 6 | hvaddcli | |- ( A +h ( -u 1 .h B ) ) e. ~H |
| 17 | 3 8 | hvaddcli | |- ( C +h ( -u 1 .h D ) ) e. ~H |
| 18 | 16 17 | hvsubvali | |- ( ( A +h ( -u 1 .h B ) ) -h ( C +h ( -u 1 .h D ) ) ) = ( ( A +h ( -u 1 .h B ) ) +h ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) ) |
| 19 | 1 7 | hvaddcli | |- ( A +h ( -u 1 .h C ) ) e. ~H |
| 20 | 2 8 | hvaddcli | |- ( B +h ( -u 1 .h D ) ) e. ~H |
| 21 | 19 20 | hvsubvali | |- ( ( A +h ( -u 1 .h C ) ) -h ( B +h ( -u 1 .h D ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) ) |
| 22 | 15 18 21 | 3eqtr4i | |- ( ( A +h ( -u 1 .h B ) ) -h ( C +h ( -u 1 .h D ) ) ) = ( ( A +h ( -u 1 .h C ) ) -h ( B +h ( -u 1 .h D ) ) ) |
| 23 | 1 2 | hvsubvali | |- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 24 | 3 4 | hvsubvali | |- ( C -h D ) = ( C +h ( -u 1 .h D ) ) |
| 25 | 23 24 | oveq12i | |- ( ( A -h B ) -h ( C -h D ) ) = ( ( A +h ( -u 1 .h B ) ) -h ( C +h ( -u 1 .h D ) ) ) |
| 26 | 1 3 | hvsubvali | |- ( A -h C ) = ( A +h ( -u 1 .h C ) ) |
| 27 | 2 4 | hvsubvali | |- ( B -h D ) = ( B +h ( -u 1 .h D ) ) |
| 28 | 26 27 | oveq12i | |- ( ( A -h C ) -h ( B -h D ) ) = ( ( A +h ( -u 1 .h C ) ) -h ( B +h ( -u 1 .h D ) ) ) |
| 29 | 22 25 28 | 3eqtr4i | |- ( ( A -h B ) -h ( C -h D ) ) = ( ( A -h C ) -h ( B -h D ) ) |