This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvnegdi.1 | |- A e. ~H |
|
| hvnegdi.2 | |- B e. ~H |
||
| Assertion | hvnegdii | |- ( -u 1 .h ( A -h B ) ) = ( B -h A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | |- A e. ~H |
|
| 2 | hvnegdi.2 | |- B e. ~H |
|
| 3 | 1 2 | hvsubvali | |- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 4 | 3 | oveq2i | |- ( -u 1 .h ( A -h B ) ) = ( -u 1 .h ( A +h ( -u 1 .h B ) ) ) |
| 5 | neg1cn | |- -u 1 e. CC |
|
| 6 | 5 2 | hvmulcli | |- ( -u 1 .h B ) e. ~H |
| 7 | 5 1 6 | hvdistr1i | |- ( -u 1 .h ( A +h ( -u 1 .h B ) ) ) = ( ( -u 1 .h A ) +h ( -u 1 .h ( -u 1 .h B ) ) ) |
| 8 | neg1mulneg1e1 | |- ( -u 1 x. -u 1 ) = 1 |
|
| 9 | 8 | oveq1i | |- ( ( -u 1 x. -u 1 ) .h B ) = ( 1 .h B ) |
| 10 | 5 5 2 | hvmulassi | |- ( ( -u 1 x. -u 1 ) .h B ) = ( -u 1 .h ( -u 1 .h B ) ) |
| 11 | ax-hvmulid | |- ( B e. ~H -> ( 1 .h B ) = B ) |
|
| 12 | 2 11 | ax-mp | |- ( 1 .h B ) = B |
| 13 | 9 10 12 | 3eqtr3i | |- ( -u 1 .h ( -u 1 .h B ) ) = B |
| 14 | 13 | oveq1i | |- ( ( -u 1 .h ( -u 1 .h B ) ) +h ( -u 1 .h A ) ) = ( B +h ( -u 1 .h A ) ) |
| 15 | 5 1 | hvmulcli | |- ( -u 1 .h A ) e. ~H |
| 16 | 5 6 | hvmulcli | |- ( -u 1 .h ( -u 1 .h B ) ) e. ~H |
| 17 | 15 16 | hvcomi | |- ( ( -u 1 .h A ) +h ( -u 1 .h ( -u 1 .h B ) ) ) = ( ( -u 1 .h ( -u 1 .h B ) ) +h ( -u 1 .h A ) ) |
| 18 | 2 1 | hvsubvali | |- ( B -h A ) = ( B +h ( -u 1 .h A ) ) |
| 19 | 14 17 18 | 3eqtr4i | |- ( ( -u 1 .h A ) +h ( -u 1 .h ( -u 1 .h B ) ) ) = ( B -h A ) |
| 20 | 4 7 19 | 3eqtri | |- ( -u 1 .h ( A -h B ) ) = ( B -h A ) |