This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthogonal projection. Lemma 4.4(i) of Beran p. 111. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjo | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjch1 | |- ( A e. ~H -> ( ( projh ` ~H ) ` A ) = A ) |
|
| 2 | 1 | adantl | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ~H ) ` A ) = A ) |
| 3 | axpjpj | |- ( ( H e. CH /\ A e. ~H ) -> A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
|
| 4 | 2 3 | eqtr2d | |- ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` ~H ) ` A ) ) |
| 5 | helch | |- ~H e. CH |
|
| 6 | 5 | pjcli | |- ( A e. ~H -> ( ( projh ` ~H ) ` A ) e. ~H ) |
| 7 | 6 | adantl | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ~H ) ` A ) e. ~H ) |
| 8 | pjhcl | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. ~H ) |
|
| 9 | choccl | |- ( H e. CH -> ( _|_ ` H ) e. CH ) |
|
| 10 | pjhcl | |- ( ( ( _|_ ` H ) e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H ) |
|
| 11 | 9 10 | sylan | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H ) |
| 12 | hvsubadd | |- ( ( ( ( projh ` ~H ) ` A ) e. ~H /\ ( ( projh ` H ) ` A ) e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H ) -> ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( _|_ ` H ) ) ` A ) <-> ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` ~H ) ` A ) ) ) |
|
| 13 | 7 8 11 12 | syl3anc | |- ( ( H e. CH /\ A e. ~H ) -> ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( _|_ ` H ) ) ` A ) <-> ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` ~H ) ` A ) ) ) |
| 14 | 4 13 | mpbird | |- ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
| 15 | 14 | eqcomd | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |