This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovolfs2.1 | |- G = ( ( abs o. - ) o. F ) |
|
| Assertion | ovolfs2 | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G = ( ( vol* o. (,) ) o. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolfs2.1 | |- G = ( ( abs o. - ) o. F ) |
|
| 2 | ovolfcl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
|
| 3 | ovolioo | |- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> ( vol* ` ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( vol* ` ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 5 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 6 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 7 | 5 6 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 8 | ffvelcdm | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 9 | 7 8 | sselid | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( RR* X. RR* ) ) |
| 10 | 1st2nd2 | |- ( ( F ` n ) e. ( RR* X. RR* ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
|
| 11 | 9 10 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 12 | 11 | fveq2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( (,) ` ( F ` n ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 13 | df-ov | |- ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
|
| 14 | 12 13 | eqtr4di | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( (,) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
| 15 | 14 | fveq2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( vol* ` ( (,) ` ( F ` n ) ) ) = ( vol* ` ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) |
| 16 | 1 | ovolfsval | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( G ` n ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 17 | 4 15 16 | 3eqtr4rd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( G ` n ) = ( vol* ` ( (,) ` ( F ` n ) ) ) ) |
| 18 | 17 | mpteq2dva | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( n e. NN |-> ( G ` n ) ) = ( n e. NN |-> ( vol* ` ( (,) ` ( F ` n ) ) ) ) ) |
| 19 | 1 | ovolfsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G : NN --> ( 0 [,) +oo ) ) |
| 20 | 19 | feqmptd | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G = ( n e. NN |-> ( G ` n ) ) ) |
| 21 | id | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 22 | 21 | feqmptd | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F = ( n e. NN |-> ( F ` n ) ) ) |
| 23 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 24 | 23 | a1i | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> (,) : ( RR* X. RR* ) --> ~P RR ) |
| 25 | 24 | ffvelcdmda | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. ( RR* X. RR* ) ) -> ( (,) ` x ) e. ~P RR ) |
| 26 | 24 | feqmptd | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> (,) = ( x e. ( RR* X. RR* ) |-> ( (,) ` x ) ) ) |
| 27 | ovolf | |- vol* : ~P RR --> ( 0 [,] +oo ) |
|
| 28 | 27 | a1i | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> vol* : ~P RR --> ( 0 [,] +oo ) ) |
| 29 | 28 | feqmptd | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> vol* = ( y e. ~P RR |-> ( vol* ` y ) ) ) |
| 30 | fveq2 | |- ( y = ( (,) ` x ) -> ( vol* ` y ) = ( vol* ` ( (,) ` x ) ) ) |
|
| 31 | 25 26 29 30 | fmptco | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( vol* o. (,) ) = ( x e. ( RR* X. RR* ) |-> ( vol* ` ( (,) ` x ) ) ) ) |
| 32 | 2fveq3 | |- ( x = ( F ` n ) -> ( vol* ` ( (,) ` x ) ) = ( vol* ` ( (,) ` ( F ` n ) ) ) ) |
|
| 33 | 9 22 31 32 | fmptco | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( vol* o. (,) ) o. F ) = ( n e. NN |-> ( vol* ` ( (,) ` ( F ` n ) ) ) ) ) |
| 34 | 18 20 33 | 3eqtr4d | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G = ( ( vol* o. (,) ) o. F ) ) |