This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and codomain of the outer volume function. (Contributed by Mario Carneiro, 16-Mar-2014) (Proof shortened by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolf | |- vol* : ~P RR --> ( 0 [,] +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso | |- < Or RR* |
|
| 2 | 1 | infex | |- inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) e. _V |
| 3 | df-ovol | |- vol* = ( x e. ~P RR |-> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
|
| 4 | 2 3 | fnmpti | |- vol* Fn ~P RR |
| 5 | elpwi | |- ( x e. ~P RR -> x C_ RR ) |
|
| 6 | ovolcl | |- ( x C_ RR -> ( vol* ` x ) e. RR* ) |
|
| 7 | ovolge0 | |- ( x C_ RR -> 0 <_ ( vol* ` x ) ) |
|
| 8 | pnfge | |- ( ( vol* ` x ) e. RR* -> ( vol* ` x ) <_ +oo ) |
|
| 9 | 6 8 | syl | |- ( x C_ RR -> ( vol* ` x ) <_ +oo ) |
| 10 | 0xr | |- 0 e. RR* |
|
| 11 | pnfxr | |- +oo e. RR* |
|
| 12 | elicc1 | |- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( ( vol* ` x ) e. ( 0 [,] +oo ) <-> ( ( vol* ` x ) e. RR* /\ 0 <_ ( vol* ` x ) /\ ( vol* ` x ) <_ +oo ) ) ) |
|
| 13 | 10 11 12 | mp2an | |- ( ( vol* ` x ) e. ( 0 [,] +oo ) <-> ( ( vol* ` x ) e. RR* /\ 0 <_ ( vol* ` x ) /\ ( vol* ` x ) <_ +oo ) ) |
| 14 | 6 7 9 13 | syl3anbrc | |- ( x C_ RR -> ( vol* ` x ) e. ( 0 [,] +oo ) ) |
| 15 | 5 14 | syl | |- ( x e. ~P RR -> ( vol* ` x ) e. ( 0 [,] +oo ) ) |
| 16 | 15 | rgen | |- A. x e. ~P RR ( vol* ` x ) e. ( 0 [,] +oo ) |
| 17 | ffnfv | |- ( vol* : ~P RR --> ( 0 [,] +oo ) <-> ( vol* Fn ~P RR /\ A. x e. ~P RR ( vol* ` x ) e. ( 0 [,] +oo ) ) ) |
|
| 18 | 4 16 17 | mpbir2an | |- vol* : ~P RR --> ( 0 [,] +oo ) |