This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than or equal to" in terms of "less than". ( sspss analog.) (Contributed by NM, 17-Oct-2011) (Revised by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pleval2.b | |- B = ( Base ` K ) |
|
| pleval2.l | |- .<_ = ( le ` K ) |
||
| pleval2.s | |- .< = ( lt ` K ) |
||
| Assertion | pleval2 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .< Y \/ X = Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pleval2.b | |- B = ( Base ` K ) |
|
| 2 | pleval2.l | |- .<_ = ( le ` K ) |
|
| 3 | pleval2.s | |- .< = ( lt ` K ) |
|
| 4 | 1 2 3 | pleval2i | |- ( ( X e. B /\ Y e. B ) -> ( X .<_ Y -> ( X .< Y \/ X = Y ) ) ) |
| 5 | 4 | 3adant1 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> ( X .< Y \/ X = Y ) ) ) |
| 6 | 2 3 | pltle | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y -> X .<_ Y ) ) |
| 7 | 1 2 | posref | |- ( ( K e. Poset /\ X e. B ) -> X .<_ X ) |
| 8 | 7 | 3adant3 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> X .<_ X ) |
| 9 | breq2 | |- ( X = Y -> ( X .<_ X <-> X .<_ Y ) ) |
|
| 10 | 8 9 | syl5ibcom | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X = Y -> X .<_ Y ) ) |
| 11 | 6 10 | jaod | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .< Y \/ X = Y ) -> X .<_ Y ) ) |
| 12 | 5 11 | impbid | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .< Y \/ X = Y ) ) ) |