This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Less-than relation. ( df-pss analog.) (Contributed by NM, 12-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pltval.l | |- .<_ = ( le ` K ) |
|
| pltval.s | |- .< = ( lt ` K ) |
||
| Assertion | pltval | |- ( ( K e. A /\ X e. B /\ Y e. C ) -> ( X .< Y <-> ( X .<_ Y /\ X =/= Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.l | |- .<_ = ( le ` K ) |
|
| 2 | pltval.s | |- .< = ( lt ` K ) |
|
| 3 | 1 2 | pltfval | |- ( K e. A -> .< = ( .<_ \ _I ) ) |
| 4 | 3 | breqd | |- ( K e. A -> ( X .< Y <-> X ( .<_ \ _I ) Y ) ) |
| 5 | brdif | |- ( X ( .<_ \ _I ) Y <-> ( X .<_ Y /\ -. X _I Y ) ) |
|
| 6 | ideqg | |- ( Y e. C -> ( X _I Y <-> X = Y ) ) |
|
| 7 | 6 | necon3bbid | |- ( Y e. C -> ( -. X _I Y <-> X =/= Y ) ) |
| 8 | 7 | adantl | |- ( ( X e. B /\ Y e. C ) -> ( -. X _I Y <-> X =/= Y ) ) |
| 9 | 8 | anbi2d | |- ( ( X e. B /\ Y e. C ) -> ( ( X .<_ Y /\ -. X _I Y ) <-> ( X .<_ Y /\ X =/= Y ) ) ) |
| 10 | 5 9 | bitrid | |- ( ( X e. B /\ Y e. C ) -> ( X ( .<_ \ _I ) Y <-> ( X .<_ Y /\ X =/= Y ) ) ) |
| 11 | 4 10 | sylan9bb | |- ( ( K e. A /\ ( X e. B /\ Y e. C ) ) -> ( X .< Y <-> ( X .<_ Y /\ X =/= Y ) ) ) |
| 12 | 11 | 3impb | |- ( ( K e. A /\ X e. B /\ Y e. C ) -> ( X .< Y <-> ( X .<_ Y /\ X =/= Y ) ) ) |