This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrval.s | |- S = ( I mPwSer R ) |
|
| psrval.k | |- K = ( Base ` R ) |
||
| psrval.a | |- .+ = ( +g ` R ) |
||
| psrval.m | |- .x. = ( .r ` R ) |
||
| psrval.o | |- O = ( TopOpen ` R ) |
||
| psrval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| psrval.b | |- ( ph -> B = ( K ^m D ) ) |
||
| psrval.p | |- .+b = ( oF .+ |` ( B X. B ) ) |
||
| psrval.t | |- .X. = ( f e. B , g e. B |-> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) ) |
||
| psrval.v | |- .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) |
||
| psrval.j | |- ( ph -> J = ( Xt_ ` ( D X. { O } ) ) ) |
||
| psrval.i | |- ( ph -> I e. W ) |
||
| psrval.r | |- ( ph -> R e. X ) |
||
| Assertion | psrval | |- ( ph -> S = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrval.s | |- S = ( I mPwSer R ) |
|
| 2 | psrval.k | |- K = ( Base ` R ) |
|
| 3 | psrval.a | |- .+ = ( +g ` R ) |
|
| 4 | psrval.m | |- .x. = ( .r ` R ) |
|
| 5 | psrval.o | |- O = ( TopOpen ` R ) |
|
| 6 | psrval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 7 | psrval.b | |- ( ph -> B = ( K ^m D ) ) |
|
| 8 | psrval.p | |- .+b = ( oF .+ |` ( B X. B ) ) |
|
| 9 | psrval.t | |- .X. = ( f e. B , g e. B |-> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) ) |
|
| 10 | psrval.v | |- .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) |
|
| 11 | psrval.j | |- ( ph -> J = ( Xt_ ` ( D X. { O } ) ) ) |
|
| 12 | psrval.i | |- ( ph -> I e. W ) |
|
| 13 | psrval.r | |- ( ph -> R e. X ) |
|
| 14 | df-psr | |- mPwSer = ( i e. _V , r e. _V |-> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |
|
| 15 | 14 | a1i | |- ( ph -> mPwSer = ( i e. _V , r e. _V |-> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) ) |
| 16 | simprl | |- ( ( ph /\ ( i = I /\ r = R ) ) -> i = I ) |
|
| 17 | 16 | oveq2d | |- ( ( ph /\ ( i = I /\ r = R ) ) -> ( NN0 ^m i ) = ( NN0 ^m I ) ) |
| 18 | rabeq | |- ( ( NN0 ^m i ) = ( NN0 ^m I ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
|
| 19 | 17 18 | syl | |- ( ( ph /\ ( i = I /\ r = R ) ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 20 | 19 6 | eqtr4di | |- ( ( ph /\ ( i = I /\ r = R ) ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = D ) |
| 21 | 20 | csbeq1d | |- ( ( ph /\ ( i = I /\ r = R ) ) -> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = [_ D / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |
| 22 | ovex | |- ( NN0 ^m i ) e. _V |
|
| 23 | 22 | rabex | |- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } e. _V |
| 24 | 20 23 | eqeltrrdi | |- ( ( ph /\ ( i = I /\ r = R ) ) -> D e. _V ) |
| 25 | simplrr | |- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> r = R ) |
|
| 26 | 25 | fveq2d | |- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> ( Base ` r ) = ( Base ` R ) ) |
| 27 | 26 2 | eqtr4di | |- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> ( Base ` r ) = K ) |
| 28 | simpr | |- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> d = D ) |
|
| 29 | 27 28 | oveq12d | |- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> ( ( Base ` r ) ^m d ) = ( K ^m D ) ) |
| 30 | 7 | ad2antrr | |- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> B = ( K ^m D ) ) |
| 31 | 29 30 | eqtr4d | |- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> ( ( Base ` r ) ^m d ) = B ) |
| 32 | 31 | csbeq1d | |- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = [_ B / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |
| 33 | ovex | |- ( ( Base ` r ) ^m d ) e. _V |
|
| 34 | 31 33 | eqeltrrdi | |- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> B e. _V ) |
| 35 | simpr | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> b = B ) |
|
| 36 | 35 | opeq2d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( Base ` ndx ) , b >. = <. ( Base ` ndx ) , B >. ) |
| 37 | 25 | adantr | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> r = R ) |
| 38 | 37 | fveq2d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( +g ` r ) = ( +g ` R ) ) |
| 39 | 38 3 | eqtr4di | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( +g ` r ) = .+ ) |
| 40 | 39 | ofeqd | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> oF ( +g ` r ) = oF .+ ) |
| 41 | 35 35 | xpeq12d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( b X. b ) = ( B X. B ) ) |
| 42 | 40 41 | reseq12d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( oF ( +g ` r ) |` ( b X. b ) ) = ( oF .+ |` ( B X. B ) ) ) |
| 43 | 42 8 | eqtr4di | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( oF ( +g ` r ) |` ( b X. b ) ) = .+b ) |
| 44 | 43 | opeq2d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. = <. ( +g ` ndx ) , .+b >. ) |
| 45 | 28 | adantr | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> d = D ) |
| 46 | rabeq | |- ( d = D -> { y e. d | y oR <_ k } = { y e. D | y oR <_ k } ) |
|
| 47 | 45 46 | syl | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> { y e. d | y oR <_ k } = { y e. D | y oR <_ k } ) |
| 48 | 37 | fveq2d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( .r ` r ) = ( .r ` R ) ) |
| 49 | 48 4 | eqtr4di | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( .r ` r ) = .x. ) |
| 50 | 49 | oveqd | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) = ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) |
| 51 | 47 50 | mpteq12dv | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) = ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) |
| 52 | 37 51 | oveq12d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) = ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) |
| 53 | 45 52 | mpteq12dv | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) ) |
| 54 | 35 35 53 | mpoeq123dv | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) = ( f e. B , g e. B |-> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) ) ) |
| 55 | 54 9 | eqtr4di | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) = .X. ) |
| 56 | 55 | opeq2d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. = <. ( .r ` ndx ) , .X. >. ) |
| 57 | 36 44 56 | tpeq123d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } ) |
| 58 | 37 | opeq2d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( Scalar ` ndx ) , r >. = <. ( Scalar ` ndx ) , R >. ) |
| 59 | 27 | adantr | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( Base ` r ) = K ) |
| 60 | 49 | ofeqd | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> oF ( .r ` r ) = oF .x. ) |
| 61 | 45 | xpeq1d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( d X. { x } ) = ( D X. { x } ) ) |
| 62 | eqidd | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> f = f ) |
|
| 63 | 60 61 62 | oveq123d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( ( d X. { x } ) oF ( .r ` r ) f ) = ( ( D X. { x } ) oF .x. f ) ) |
| 64 | 59 35 63 | mpoeq123dv | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) ) |
| 65 | 64 10 | eqtr4di | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) = .xb ) |
| 66 | 65 | opeq2d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. = <. ( .s ` ndx ) , .xb >. ) |
| 67 | 37 | fveq2d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( TopOpen ` r ) = ( TopOpen ` R ) ) |
| 68 | 67 5 | eqtr4di | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( TopOpen ` r ) = O ) |
| 69 | 68 | sneqd | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> { ( TopOpen ` r ) } = { O } ) |
| 70 | 45 69 | xpeq12d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( d X. { ( TopOpen ` r ) } ) = ( D X. { O } ) ) |
| 71 | 70 | fveq2d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) = ( Xt_ ` ( D X. { O } ) ) ) |
| 72 | 11 | ad3antrrr | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> J = ( Xt_ ` ( D X. { O } ) ) ) |
| 73 | 71 72 | eqtr4d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) = J ) |
| 74 | 73 | opeq2d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. = <. ( TopSet ` ndx ) , J >. ) |
| 75 | 58 66 74 | tpeq123d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } = { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) |
| 76 | 57 75 | uneq12d | |- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| 77 | 34 76 | csbied | |- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> [_ B / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| 78 | 32 77 | eqtrd | |- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| 79 | 24 78 | csbied | |- ( ( ph /\ ( i = I /\ r = R ) ) -> [_ D / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| 80 | 21 79 | eqtrd | |- ( ( ph /\ ( i = I /\ r = R ) ) -> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| 81 | 12 | elexd | |- ( ph -> I e. _V ) |
| 82 | 13 | elexd | |- ( ph -> R e. _V ) |
| 83 | tpex | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } e. _V |
|
| 84 | tpex | |- { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } e. _V |
|
| 85 | 83 84 | unex | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) e. _V |
| 86 | 85 | a1i | |- ( ph -> ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) e. _V ) |
| 87 | 15 80 81 82 86 | ovmpod | |- ( ph -> ( I mPwSer R ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| 88 | 1 87 | eqtrid | |- ( ph -> S = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |