This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrle.s | |- S = ( I mPwSer R ) |
|
| opsrle.o | |- O = ( ( I ordPwSer R ) ` T ) |
||
| opsrle.b | |- B = ( Base ` S ) |
||
| opsrle.q | |- .< = ( lt ` R ) |
||
| opsrle.c | |- C = ( T |
||
| opsrle.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| opsrle.l | |- .<_ = ( le ` O ) |
||
| opsrle.t | |- ( ph -> T C_ ( I X. I ) ) |
||
| Assertion | opsrle | |- ( ph -> .<_ = { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrle.s | |- S = ( I mPwSer R ) |
|
| 2 | opsrle.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| 3 | opsrle.b | |- B = ( Base ` S ) |
|
| 4 | opsrle.q | |- .< = ( lt ` R ) |
|
| 5 | opsrle.c | |- C = ( T |
|
| 6 | opsrle.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 7 | opsrle.l | |- .<_ = ( le ` O ) |
|
| 8 | opsrle.t | |- ( ph -> T C_ ( I X. I ) ) |
|
| 9 | eqid | |- { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } = { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } |
|
| 10 | simprl | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> I e. _V ) |
|
| 11 | simprr | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> R e. _V ) |
|
| 12 | 8 | adantr | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> T C_ ( I X. I ) ) |
| 13 | 1 2 3 4 5 6 9 10 11 12 | opsrval | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> O = ( S sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } >. ) ) |
| 14 | 13 | fveq2d | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> ( le ` O ) = ( le ` ( S sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } >. ) ) ) |
| 15 | 1 | ovexi | |- S e. _V |
| 16 | 3 | fvexi | |- B e. _V |
| 17 | 16 16 | xpex | |- ( B X. B ) e. _V |
| 18 | vex | |- x e. _V |
|
| 19 | vex | |- y e. _V |
|
| 20 | 18 19 | prss | |- ( ( x e. B /\ y e. B ) <-> { x , y } C_ B ) |
| 21 | 20 | anbi1i | |- ( ( ( x e. B /\ y e. B ) /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) <-> ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) ) |
| 22 | 21 | opabbii | |- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } = { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } |
| 23 | opabssxp | |- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } C_ ( B X. B ) |
|
| 24 | 22 23 | eqsstrri | |- { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } C_ ( B X. B ) |
| 25 | 17 24 | ssexi | |- { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } e. _V |
| 26 | pleid | |- le = Slot ( le ` ndx ) |
|
| 27 | 26 | setsid | |- ( ( S e. _V /\ { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } e. _V ) -> { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } = ( le ` ( S sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } >. ) ) ) |
| 28 | 15 25 27 | mp2an | |- { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } = ( le ` ( S sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } >. ) ) |
| 29 | 14 7 28 | 3eqtr4g | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> .<_ = { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } ) |
| 30 | reldmopsr | |- Rel dom ordPwSer |
|
| 31 | 30 | ovprc | |- ( -. ( I e. _V /\ R e. _V ) -> ( I ordPwSer R ) = (/) ) |
| 32 | 31 | adantl | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> ( I ordPwSer R ) = (/) ) |
| 33 | 32 | fveq1d | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> ( ( I ordPwSer R ) ` T ) = ( (/) ` T ) ) |
| 34 | 2 33 | eqtrid | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> O = ( (/) ` T ) ) |
| 35 | 0fv | |- ( (/) ` T ) = (/) |
|
| 36 | 34 35 | eqtrdi | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> O = (/) ) |
| 37 | 36 | fveq2d | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> ( le ` O ) = ( le ` (/) ) ) |
| 38 | 26 | str0 | |- (/) = ( le ` (/) ) |
| 39 | 37 7 38 | 3eqtr4g | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> .<_ = (/) ) |
| 40 | reldmpsr | |- Rel dom mPwSer |
|
| 41 | 40 | ovprc | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mPwSer R ) = (/) ) |
| 42 | 41 | adantl | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> ( I mPwSer R ) = (/) ) |
| 43 | 1 42 | eqtrid | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> S = (/) ) |
| 44 | 43 | fveq2d | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> ( Base ` S ) = ( Base ` (/) ) ) |
| 45 | base0 | |- (/) = ( Base ` (/) ) |
|
| 46 | 44 3 45 | 3eqtr4g | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> B = (/) ) |
| 47 | 46 | xpeq2d | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> ( B X. B ) = ( B X. (/) ) ) |
| 48 | xp0 | |- ( B X. (/) ) = (/) |
|
| 49 | 47 48 | eqtrdi | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> ( B X. B ) = (/) ) |
| 50 | sseq0 | |- ( ( { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } C_ ( B X. B ) /\ ( B X. B ) = (/) ) -> { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } = (/) ) |
|
| 51 | 24 49 50 | sylancr | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } = (/) ) |
| 52 | 39 51 | eqtr4d | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> .<_ = { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } ) |
| 53 | 29 52 | pm2.61dan | |- ( ph -> .<_ = { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } ) |