This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a total order on the set of all power series in s from the index set i given a wellordering r of i and a totally ordered base ring s . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-opsr | |- ordPwSer = ( i e. _V , s e. _V |-> ( r e. ~P ( i X. i ) |-> [_ ( i mPwSer s ) / p ]_ ( p sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | copws | |- ordPwSer |
|
| 1 | vi | |- i |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | vr | |- r |
|
| 5 | 1 | cv | |- i |
| 6 | 5 5 | cxp | |- ( i X. i ) |
| 7 | 6 | cpw | |- ~P ( i X. i ) |
| 8 | cmps | |- mPwSer |
|
| 9 | 3 | cv | |- s |
| 10 | 5 9 8 | co | |- ( i mPwSer s ) |
| 11 | vp | |- p |
|
| 12 | 11 | cv | |- p |
| 13 | csts | |- sSet |
|
| 14 | cple | |- le |
|
| 15 | cnx | |- ndx |
|
| 16 | 15 14 | cfv | |- ( le ` ndx ) |
| 17 | vx | |- x |
|
| 18 | vy | |- y |
|
| 19 | 17 | cv | |- x |
| 20 | 18 | cv | |- y |
| 21 | 19 20 | cpr | |- { x , y } |
| 22 | cbs | |- Base |
|
| 23 | 12 22 | cfv | |- ( Base ` p ) |
| 24 | 21 23 | wss | |- { x , y } C_ ( Base ` p ) |
| 25 | vh | |- h |
|
| 26 | cn0 | |- NN0 |
|
| 27 | cmap | |- ^m |
|
| 28 | 26 5 27 | co | |- ( NN0 ^m i ) |
| 29 | 25 | cv | |- h |
| 30 | 29 | ccnv | |- `' h |
| 31 | cn | |- NN |
|
| 32 | 30 31 | cima | |- ( `' h " NN ) |
| 33 | cfn | |- Fin |
|
| 34 | 32 33 | wcel | |- ( `' h " NN ) e. Fin |
| 35 | 34 25 28 | crab | |- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |
| 36 | vd | |- d |
|
| 37 | vz | |- z |
|
| 38 | 36 | cv | |- d |
| 39 | 37 | cv | |- z |
| 40 | 39 19 | cfv | |- ( x ` z ) |
| 41 | cplt | |- lt |
|
| 42 | 9 41 | cfv | |- ( lt ` s ) |
| 43 | 39 20 | cfv | |- ( y ` z ) |
| 44 | 40 43 42 | wbr | |- ( x ` z ) ( lt ` s ) ( y ` z ) |
| 45 | vw | |- w |
|
| 46 | 45 | cv | |- w |
| 47 | 4 | cv | |- r |
| 48 | cltb | |- |
|
| 49 | 47 5 48 | co | |- ( r |
| 50 | 46 39 49 | wbr | |- w ( r |
| 51 | 46 19 | cfv | |- ( x ` w ) |
| 52 | 46 20 | cfv | |- ( y ` w ) |
| 53 | 51 52 | wceq | |- ( x ` w ) = ( y ` w ) |
| 54 | 50 53 | wi | |- ( w ( r |
| 55 | 54 45 38 | wral | |- A. w e. d ( w ( r |
| 56 | 44 55 | wa | |- ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 57 | 56 37 38 | wrex | |- E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 58 | 57 36 35 | wsbc | |- [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 59 | 19 20 | wceq | |- x = y |
| 60 | 58 59 | wo | |- ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 61 | 24 60 | wa | |- ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 62 | 61 17 18 | copab | |- { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 63 | 16 62 | cop | |- <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 64 | 12 63 13 | co | |- ( p sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 65 | 11 10 64 | csb | |- [_ ( i mPwSer s ) / p ]_ ( p sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 66 | 4 7 65 | cmpt | |- ( r e. ~P ( i X. i ) |-> [_ ( i mPwSer s ) / p ]_ ( p sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 67 | 1 3 2 2 66 | cmpo | |- ( i e. _V , s e. _V |-> ( r e. ~P ( i X. i ) |-> [_ ( i mPwSer s ) / p ]_ ( p sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 68 | 0 67 | wceq | |- ordPwSer = ( i e. _V , s e. _V |-> ( r e. ~P ( i X. i ) |-> [_ ( i mPwSer s ) / p ]_ ( p sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |