This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrso.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| opsrso.i | |- ( ph -> I e. V ) |
||
| opsrso.r | |- ( ph -> R e. Toset ) |
||
| opsrso.t | |- ( ph -> T C_ ( I X. I ) ) |
||
| opsrso.w | |- ( ph -> T We I ) |
||
| Assertion | opsrtos | |- ( ph -> O e. Toset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrso.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| 2 | opsrso.i | |- ( ph -> I e. V ) |
|
| 3 | opsrso.r | |- ( ph -> R e. Toset ) |
|
| 4 | opsrso.t | |- ( ph -> T C_ ( I X. I ) ) |
|
| 5 | opsrso.w | |- ( ph -> T We I ) |
|
| 6 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 7 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 8 | eqid | |- ( lt ` R ) = ( lt ` R ) |
|
| 9 | eqid | |- ( T |
|
| 10 | eqid | |- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 11 | biid | |- ( E. z e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( x ` z ) ( lt ` R ) ( y ` z ) /\ A. w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( w ( T |
|
| 12 | eqid | |- ( le ` O ) = ( le ` O ) |
|
| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | opsrtoslem2 | |- ( ph -> O e. Toset ) |