This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for opsrtos . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrso.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| opsrso.i | |- ( ph -> I e. V ) |
||
| opsrso.r | |- ( ph -> R e. Toset ) |
||
| opsrso.t | |- ( ph -> T C_ ( I X. I ) ) |
||
| opsrso.w | |- ( ph -> T We I ) |
||
| opsrtoslem.s | |- S = ( I mPwSer R ) |
||
| opsrtoslem.b | |- B = ( Base ` S ) |
||
| opsrtoslem.q | |- .< = ( lt ` R ) |
||
| opsrtoslem.c | |- C = ( T |
||
| opsrtoslem.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| opsrtoslem.ps | |- ( ps <-> E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) ) |
||
| opsrtoslem.l | |- .<_ = ( le ` O ) |
||
| Assertion | opsrtoslem1 | |- ( ph -> .<_ = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrso.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| 2 | opsrso.i | |- ( ph -> I e. V ) |
|
| 3 | opsrso.r | |- ( ph -> R e. Toset ) |
|
| 4 | opsrso.t | |- ( ph -> T C_ ( I X. I ) ) |
|
| 5 | opsrso.w | |- ( ph -> T We I ) |
|
| 6 | opsrtoslem.s | |- S = ( I mPwSer R ) |
|
| 7 | opsrtoslem.b | |- B = ( Base ` S ) |
|
| 8 | opsrtoslem.q | |- .< = ( lt ` R ) |
|
| 9 | opsrtoslem.c | |- C = ( T |
|
| 10 | opsrtoslem.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 11 | opsrtoslem.ps | |- ( ps <-> E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) ) |
|
| 12 | opsrtoslem.l | |- .<_ = ( le ` O ) |
|
| 13 | 6 1 7 8 9 10 12 4 | opsrle | |- ( ph -> .<_ = { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } ) |
| 14 | unopab | |- ( { <. x , y >. | ( { x , y } C_ B /\ ps ) } u. { <. x , y >. | ( { x , y } C_ B /\ x = y ) } ) = { <. x , y >. | ( ( { x , y } C_ B /\ ps ) \/ ( { x , y } C_ B /\ x = y ) ) } |
|
| 15 | inopab | |- ( { <. x , y >. | ps } i^i { <. x , y >. | ( x e. B /\ y e. B ) } ) = { <. x , y >. | ( ps /\ ( x e. B /\ y e. B ) ) } |
|
| 16 | df-xp | |- ( B X. B ) = { <. x , y >. | ( x e. B /\ y e. B ) } |
|
| 17 | 16 | ineq2i | |- ( { <. x , y >. | ps } i^i ( B X. B ) ) = ( { <. x , y >. | ps } i^i { <. x , y >. | ( x e. B /\ y e. B ) } ) |
| 18 | vex | |- x e. _V |
|
| 19 | vex | |- y e. _V |
|
| 20 | 18 19 | prss | |- ( ( x e. B /\ y e. B ) <-> { x , y } C_ B ) |
| 21 | 20 | anbi1i | |- ( ( ( x e. B /\ y e. B ) /\ ps ) <-> ( { x , y } C_ B /\ ps ) ) |
| 22 | ancom | |- ( ( ( x e. B /\ y e. B ) /\ ps ) <-> ( ps /\ ( x e. B /\ y e. B ) ) ) |
|
| 23 | 21 22 | bitr3i | |- ( ( { x , y } C_ B /\ ps ) <-> ( ps /\ ( x e. B /\ y e. B ) ) ) |
| 24 | 23 | opabbii | |- { <. x , y >. | ( { x , y } C_ B /\ ps ) } = { <. x , y >. | ( ps /\ ( x e. B /\ y e. B ) ) } |
| 25 | 15 17 24 | 3eqtr4i | |- ( { <. x , y >. | ps } i^i ( B X. B ) ) = { <. x , y >. | ( { x , y } C_ B /\ ps ) } |
| 26 | opabresid | |- ( _I |` B ) = { <. x , y >. | ( x e. B /\ y = x ) } |
|
| 27 | equcom | |- ( x = y <-> y = x ) |
|
| 28 | 27 | anbi2i | |- ( ( x e. B /\ x = y ) <-> ( x e. B /\ y = x ) ) |
| 29 | eleq1w | |- ( x = y -> ( x e. B <-> y e. B ) ) |
|
| 30 | 29 | biimpac | |- ( ( x e. B /\ x = y ) -> y e. B ) |
| 31 | 30 | pm4.71i | |- ( ( x e. B /\ x = y ) <-> ( ( x e. B /\ x = y ) /\ y e. B ) ) |
| 32 | 28 31 | bitr3i | |- ( ( x e. B /\ y = x ) <-> ( ( x e. B /\ x = y ) /\ y e. B ) ) |
| 33 | an32 | |- ( ( ( x e. B /\ x = y ) /\ y e. B ) <-> ( ( x e. B /\ y e. B ) /\ x = y ) ) |
|
| 34 | 20 | anbi1i | |- ( ( ( x e. B /\ y e. B ) /\ x = y ) <-> ( { x , y } C_ B /\ x = y ) ) |
| 35 | 32 33 34 | 3bitri | |- ( ( x e. B /\ y = x ) <-> ( { x , y } C_ B /\ x = y ) ) |
| 36 | 35 | opabbii | |- { <. x , y >. | ( x e. B /\ y = x ) } = { <. x , y >. | ( { x , y } C_ B /\ x = y ) } |
| 37 | 26 36 | eqtri | |- ( _I |` B ) = { <. x , y >. | ( { x , y } C_ B /\ x = y ) } |
| 38 | 25 37 | uneq12i | |- ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) = ( { <. x , y >. | ( { x , y } C_ B /\ ps ) } u. { <. x , y >. | ( { x , y } C_ B /\ x = y ) } ) |
| 39 | 11 | orbi1i | |- ( ( ps \/ x = y ) <-> ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) |
| 40 | 39 | anbi2i | |- ( ( { x , y } C_ B /\ ( ps \/ x = y ) ) <-> ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) ) |
| 41 | andi | |- ( ( { x , y } C_ B /\ ( ps \/ x = y ) ) <-> ( ( { x , y } C_ B /\ ps ) \/ ( { x , y } C_ B /\ x = y ) ) ) |
|
| 42 | 40 41 | bitr3i | |- ( ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) <-> ( ( { x , y } C_ B /\ ps ) \/ ( { x , y } C_ B /\ x = y ) ) ) |
| 43 | 42 | opabbii | |- { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } = { <. x , y >. | ( ( { x , y } C_ B /\ ps ) \/ ( { x , y } C_ B /\ x = y ) ) } |
| 44 | 14 38 43 | 3eqtr4ri | |- { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) |
| 45 | 13 44 | eqtrdi | |- ( ph -> .<_ = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) ) |