This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of total order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soinxp | |- ( R Or A <-> ( R i^i ( A X. A ) ) Or A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poinxp | |- ( R Po A <-> ( R i^i ( A X. A ) ) Po A ) |
|
| 2 | brinxp | |- ( ( x e. A /\ y e. A ) -> ( x R y <-> x ( R i^i ( A X. A ) ) y ) ) |
|
| 3 | biidd | |- ( ( x e. A /\ y e. A ) -> ( x = y <-> x = y ) ) |
|
| 4 | brinxp | |- ( ( y e. A /\ x e. A ) -> ( y R x <-> y ( R i^i ( A X. A ) ) x ) ) |
|
| 5 | 4 | ancoms | |- ( ( x e. A /\ y e. A ) -> ( y R x <-> y ( R i^i ( A X. A ) ) x ) ) |
| 6 | 2 3 5 | 3orbi123d | |- ( ( x e. A /\ y e. A ) -> ( ( x R y \/ x = y \/ y R x ) <-> ( x ( R i^i ( A X. A ) ) y \/ x = y \/ y ( R i^i ( A X. A ) ) x ) ) ) |
| 7 | 6 | ralbidva | |- ( x e. A -> ( A. y e. A ( x R y \/ x = y \/ y R x ) <-> A. y e. A ( x ( R i^i ( A X. A ) ) y \/ x = y \/ y ( R i^i ( A X. A ) ) x ) ) ) |
| 8 | 7 | ralbiia | |- ( A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) <-> A. x e. A A. y e. A ( x ( R i^i ( A X. A ) ) y \/ x = y \/ y ( R i^i ( A X. A ) ) x ) ) |
| 9 | 1 8 | anbi12i | |- ( ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) <-> ( ( R i^i ( A X. A ) ) Po A /\ A. x e. A A. y e. A ( x ( R i^i ( A X. A ) ) y \/ x = y \/ y ( R i^i ( A X. A ) ) x ) ) ) |
| 10 | df-so | |- ( R Or A <-> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) ) |
|
| 11 | df-so | |- ( ( R i^i ( A X. A ) ) Or A <-> ( ( R i^i ( A X. A ) ) Po A /\ A. x e. A A. y e. A ( x ( R i^i ( A X. A ) ) y \/ x = y \/ y ( R i^i ( A X. A ) ) x ) ) ) |
|
| 12 | 9 10 11 | 3bitr4i | |- ( R Or A <-> ( R i^i ( A X. A ) ) Or A ) |