This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppgtmd.1 | |- O = ( oppG ` G ) |
|
| Assertion | oppgtmd | |- ( G e. TopMnd -> O e. TopMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgtmd.1 | |- O = ( oppG ` G ) |
|
| 2 | tmdmnd | |- ( G e. TopMnd -> G e. Mnd ) |
|
| 3 | 1 | oppgmnd | |- ( G e. Mnd -> O e. Mnd ) |
| 4 | 2 3 | syl | |- ( G e. TopMnd -> O e. Mnd ) |
| 5 | eqid | |- ( TopOpen ` G ) = ( TopOpen ` G ) |
|
| 6 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 7 | 5 6 | tmdtopon | |- ( G e. TopMnd -> ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) ) |
| 8 | 1 6 | oppgbas | |- ( Base ` G ) = ( Base ` O ) |
| 9 | 1 5 | oppgtopn | |- ( TopOpen ` G ) = ( TopOpen ` O ) |
| 10 | 8 9 | istps | |- ( O e. TopSp <-> ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) ) |
| 11 | 7 10 | sylibr | |- ( G e. TopMnd -> O e. TopSp ) |
| 12 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 13 | id | |- ( G e. TopMnd -> G e. TopMnd ) |
|
| 14 | 7 7 | cnmpt2nd | |- ( G e. TopMnd -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> y ) e. ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) Cn ( TopOpen ` G ) ) ) |
| 15 | 7 7 | cnmpt1st | |- ( G e. TopMnd -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> x ) e. ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) Cn ( TopOpen ` G ) ) ) |
| 16 | 5 12 13 7 7 14 15 | cnmpt2plusg | |- ( G e. TopMnd -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( y ( +g ` G ) x ) ) e. ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) Cn ( TopOpen ` G ) ) ) |
| 17 | eqid | |- ( +g ` O ) = ( +g ` O ) |
|
| 18 | eqid | |- ( +f ` O ) = ( +f ` O ) |
|
| 19 | 8 17 18 | plusffval | |- ( +f ` O ) = ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( x ( +g ` O ) y ) ) |
| 20 | 12 1 17 | oppgplus | |- ( x ( +g ` O ) y ) = ( y ( +g ` G ) x ) |
| 21 | 6 6 20 | mpoeq123i | |- ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( x ( +g ` O ) y ) ) = ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( y ( +g ` G ) x ) ) |
| 22 | 19 21 | eqtr2i | |- ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( y ( +g ` G ) x ) ) = ( +f ` O ) |
| 23 | 22 9 | istmd | |- ( O e. TopMnd <-> ( O e. Mnd /\ O e. TopSp /\ ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( y ( +g ` G ) x ) ) e. ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) Cn ( TopOpen ` G ) ) ) ) |
| 24 | 4 11 16 23 | syl3anbrc | |- ( G e. TopMnd -> O e. TopMnd ) |