This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppgtmd.1 | |- O = ( oppG ` G ) |
|
| Assertion | oppgtgp | |- ( G e. TopGrp -> O e. TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgtmd.1 | |- O = ( oppG ` G ) |
|
| 2 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
| 3 | 1 | oppggrp | |- ( G e. Grp -> O e. Grp ) |
| 4 | 2 3 | syl | |- ( G e. TopGrp -> O e. Grp ) |
| 5 | tgptmd | |- ( G e. TopGrp -> G e. TopMnd ) |
|
| 6 | 1 | oppgtmd | |- ( G e. TopMnd -> O e. TopMnd ) |
| 7 | 5 6 | syl | |- ( G e. TopGrp -> O e. TopMnd ) |
| 8 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 9 | 1 8 | oppginv | |- ( G e. Grp -> ( invg ` G ) = ( invg ` O ) ) |
| 10 | 2 9 | syl | |- ( G e. TopGrp -> ( invg ` G ) = ( invg ` O ) ) |
| 11 | eqid | |- ( TopOpen ` G ) = ( TopOpen ` G ) |
|
| 12 | 11 8 | tgpinv | |- ( G e. TopGrp -> ( invg ` G ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
| 13 | 10 12 | eqeltrrd | |- ( G e. TopGrp -> ( invg ` O ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
| 14 | 1 11 | oppgtopn | |- ( TopOpen ` G ) = ( TopOpen ` O ) |
| 15 | eqid | |- ( invg ` O ) = ( invg ` O ) |
|
| 16 | 14 15 | istgp | |- ( O e. TopGrp <-> ( O e. Grp /\ O e. TopMnd /\ ( invg ` O ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) ) |
| 17 | 4 7 13 16 | syl3anbrc | |- ( G e. TopGrp -> O e. TopGrp ) |