This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Fan Zheng, 26-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppgval.2 | |- .+ = ( +g ` R ) |
|
| oppgval.3 | |- O = ( oppG ` R ) |
||
| oppgplusfval.4 | |- .+b = ( +g ` O ) |
||
| Assertion | oppgplusfval | |- .+b = tpos .+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgval.2 | |- .+ = ( +g ` R ) |
|
| 2 | oppgval.3 | |- O = ( oppG ` R ) |
|
| 3 | oppgplusfval.4 | |- .+b = ( +g ` O ) |
|
| 4 | 1 2 | oppgval | |- O = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) |
| 5 | 4 | fveq2i | |- ( +g ` O ) = ( +g ` ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) |
| 6 | 1 | fvexi | |- .+ e. _V |
| 7 | 6 | tposex | |- tpos .+ e. _V |
| 8 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
| 9 | 8 | setsid | |- ( ( R e. _V /\ tpos .+ e. _V ) -> tpos .+ = ( +g ` ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) ) |
| 10 | 7 9 | mpan2 | |- ( R e. _V -> tpos .+ = ( +g ` ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) ) |
| 11 | 5 10 | eqtr4id | |- ( R e. _V -> ( +g ` O ) = tpos .+ ) |
| 12 | tpos0 | |- tpos (/) = (/) |
|
| 13 | 8 | str0 | |- (/) = ( +g ` (/) ) |
| 14 | 12 13 | eqtr2i | |- ( +g ` (/) ) = tpos (/) |
| 15 | reldmsets | |- Rel dom sSet |
|
| 16 | 15 | ovprc1 | |- ( -. R e. _V -> ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) = (/) ) |
| 17 | 4 16 | eqtrid | |- ( -. R e. _V -> O = (/) ) |
| 18 | 17 | fveq2d | |- ( -. R e. _V -> ( +g ` O ) = ( +g ` (/) ) ) |
| 19 | fvprc | |- ( -. R e. _V -> ( +g ` R ) = (/) ) |
|
| 20 | 1 19 | eqtrid | |- ( -. R e. _V -> .+ = (/) ) |
| 21 | 20 | tposeqd | |- ( -. R e. _V -> tpos .+ = tpos (/) ) |
| 22 | 14 18 21 | 3eqtr4a | |- ( -. R e. _V -> ( +g ` O ) = tpos .+ ) |
| 23 | 11 22 | pm2.61i | |- ( +g ` O ) = tpos .+ |
| 24 | 3 23 | eqtri | |- .+b = tpos .+ |