This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| mndtcbas.m | |- ( ph -> M e. Mnd ) |
||
| mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
||
| mndtchom.x | |- ( ph -> X e. B ) |
||
| mndtchom.y | |- ( ph -> Y e. B ) |
||
| mndtcco.z | |- ( ph -> Z e. B ) |
||
| mndtcco.o | |- ( ph -> .x. = ( comp ` C ) ) |
||
| Assertion | mndtcco | |- ( ph -> ( <. X , Y >. .x. Z ) = ( +g ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| 2 | mndtcbas.m | |- ( ph -> M e. Mnd ) |
|
| 3 | mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 4 | mndtchom.x | |- ( ph -> X e. B ) |
|
| 5 | mndtchom.y | |- ( ph -> Y e. B ) |
|
| 6 | mndtcco.z | |- ( ph -> Z e. B ) |
|
| 7 | mndtcco.o | |- ( ph -> .x. = ( comp ` C ) ) |
|
| 8 | 1 2 | mndtcval | |- ( ph -> C = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
| 9 | catstr | |- { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } Struct <. 1 , ; 1 5 >. |
|
| 10 | ccoid | |- comp = Slot ( comp ` ndx ) |
|
| 11 | snsstp3 | |- { <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } C_ { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } |
|
| 12 | snex | |- { <. <. M , M , M >. , ( +g ` M ) >. } e. _V |
|
| 13 | 12 | a1i | |- ( ph -> { <. <. M , M , M >. , ( +g ` M ) >. } e. _V ) |
| 14 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 15 | 8 9 10 11 13 14 | strfv3 | |- ( ph -> ( comp ` C ) = { <. <. M , M , M >. , ( +g ` M ) >. } ) |
| 16 | 7 15 | eqtrd | |- ( ph -> .x. = { <. <. M , M , M >. , ( +g ` M ) >. } ) |
| 17 | 1 2 3 4 | mndtcob | |- ( ph -> X = M ) |
| 18 | 1 2 3 5 | mndtcob | |- ( ph -> Y = M ) |
| 19 | 17 18 | opeq12d | |- ( ph -> <. X , Y >. = <. M , M >. ) |
| 20 | 1 2 3 6 | mndtcob | |- ( ph -> Z = M ) |
| 21 | 16 19 20 | oveq123d | |- ( ph -> ( <. X , Y >. .x. Z ) = ( <. M , M >. { <. <. M , M , M >. , ( +g ` M ) >. } M ) ) |
| 22 | df-ov | |- ( <. M , M >. { <. <. M , M , M >. , ( +g ` M ) >. } M ) = ( { <. <. M , M , M >. , ( +g ` M ) >. } ` <. <. M , M >. , M >. ) |
|
| 23 | df-ot | |- <. M , M , M >. = <. <. M , M >. , M >. |
|
| 24 | 23 | fveq2i | |- ( { <. <. M , M , M >. , ( +g ` M ) >. } ` <. M , M , M >. ) = ( { <. <. M , M , M >. , ( +g ` M ) >. } ` <. <. M , M >. , M >. ) |
| 25 | otex | |- <. M , M , M >. e. _V |
|
| 26 | fvex | |- ( +g ` M ) e. _V |
|
| 27 | 25 26 | fvsn | |- ( { <. <. M , M , M >. , ( +g ` M ) >. } ` <. M , M , M >. ) = ( +g ` M ) |
| 28 | 22 24 27 | 3eqtr2i | |- ( <. M , M >. { <. <. M , M , M >. , ( +g ` M ) >. } M ) = ( +g ` M ) |
| 29 | 21 28 | eqtrdi | |- ( ph -> ( <. X , Y >. .x. Z ) = ( +g ` M ) ) |