This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted opposite monoid has the same identity morphism as that of the opposite category. Example 3.6(2) of Adamek p. 25. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| mndtccat.m | |- ( ph -> M e. Mnd ) |
||
| oppgoppchom.d | |- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) |
||
| oppgoppchom.o | |- O = ( oppCat ` C ) |
||
| oppgoppchom.x | |- ( ph -> X e. ( Base ` D ) ) |
||
| oppgoppchom.y | |- ( ph -> Y e. ( Base ` O ) ) |
||
| Assertion | oppgoppcid | |- ( ph -> ( ( Id ` D ) ` X ) = ( ( Id ` O ) ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| 2 | mndtccat.m | |- ( ph -> M e. Mnd ) |
|
| 3 | oppgoppchom.d | |- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) |
|
| 4 | oppgoppchom.o | |- O = ( oppCat ` C ) |
|
| 5 | oppgoppchom.x | |- ( ph -> X e. ( Base ` D ) ) |
|
| 6 | oppgoppchom.y | |- ( ph -> Y e. ( Base ` O ) ) |
|
| 7 | eqid | |- ( oppG ` M ) = ( oppG ` M ) |
|
| 8 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 9 | 7 8 | oppgid | |- ( 0g ` M ) = ( 0g ` ( oppG ` M ) ) |
| 10 | 9 | a1i | |- ( ph -> ( 0g ` M ) = ( 0g ` ( oppG ` M ) ) ) |
| 11 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 12 | 4 11 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 13 | 12 | eqcomi | |- ( Base ` O ) = ( Base ` C ) |
| 14 | 13 | a1i | |- ( ph -> ( Base ` O ) = ( Base ` C ) ) |
| 15 | 1 2 | mndtccat | |- ( ph -> C e. Cat ) |
| 16 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 17 | 4 16 | oppcid | |- ( C e. Cat -> ( Id ` O ) = ( Id ` C ) ) |
| 18 | 15 17 | syl | |- ( ph -> ( Id ` O ) = ( Id ` C ) ) |
| 19 | 1 2 14 6 18 | mndtcid | |- ( ph -> ( ( Id ` O ) ` Y ) = ( 0g ` M ) ) |
| 20 | 7 | oppgmnd | |- ( M e. Mnd -> ( oppG ` M ) e. Mnd ) |
| 21 | 2 20 | syl | |- ( ph -> ( oppG ` M ) e. Mnd ) |
| 22 | eqidd | |- ( ph -> ( Base ` D ) = ( Base ` D ) ) |
|
| 23 | eqidd | |- ( ph -> ( Id ` D ) = ( Id ` D ) ) |
|
| 24 | 3 21 22 5 23 | mndtcid | |- ( ph -> ( ( Id ` D ) ` X ) = ( 0g ` ( oppG ` M ) ) ) |
| 25 | 10 19 24 | 3eqtr4rd | |- ( ph -> ( ( Id ` D ) ` X ) = ( ( Id ` O ) ` Y ) ) |