This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppgbas.1 | |- O = ( oppG ` R ) |
|
| oppginv.2 | |- I = ( invg ` R ) |
||
| Assertion | oppginv | |- ( R e. Grp -> I = ( invg ` O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | |- O = ( oppG ` R ) |
|
| 2 | oppginv.2 | |- I = ( invg ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 3 2 | grpinvf | |- ( R e. Grp -> I : ( Base ` R ) --> ( Base ` R ) ) |
| 5 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 6 | eqid | |- ( +g ` O ) = ( +g ` O ) |
|
| 7 | 5 1 6 | oppgplus | |- ( ( I ` x ) ( +g ` O ) x ) = ( x ( +g ` R ) ( I ` x ) ) |
| 8 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 9 | 3 5 8 2 | grprinv | |- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( x ( +g ` R ) ( I ` x ) ) = ( 0g ` R ) ) |
| 10 | 7 9 | eqtrid | |- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( I ` x ) ( +g ` O ) x ) = ( 0g ` R ) ) |
| 11 | 10 | ralrimiva | |- ( R e. Grp -> A. x e. ( Base ` R ) ( ( I ` x ) ( +g ` O ) x ) = ( 0g ` R ) ) |
| 12 | 1 | oppggrp | |- ( R e. Grp -> O e. Grp ) |
| 13 | 1 3 | oppgbas | |- ( Base ` R ) = ( Base ` O ) |
| 14 | 1 8 | oppgid | |- ( 0g ` R ) = ( 0g ` O ) |
| 15 | eqid | |- ( invg ` O ) = ( invg ` O ) |
|
| 16 | 13 6 14 15 | isgrpinv | |- ( O e. Grp -> ( ( I : ( Base ` R ) --> ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( I ` x ) ( +g ` O ) x ) = ( 0g ` R ) ) <-> ( invg ` O ) = I ) ) |
| 17 | 12 16 | syl | |- ( R e. Grp -> ( ( I : ( Base ` R ) --> ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( I ` x ) ( +g ` O ) x ) = ( 0g ` R ) ) <-> ( invg ` O ) = I ) ) |
| 18 | 4 11 17 | mpbi2and | |- ( R e. Grp -> ( invg ` O ) = I ) |
| 19 | 18 | eqcomd | |- ( R e. Grp -> I = ( invg ` O ) ) |