This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppgbas.1 | |- O = ( oppG ` R ) |
|
| Assertion | oppggrp | |- ( R e. Grp -> O e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | |- O = ( oppG ` R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | 1 2 | oppgbas | |- ( Base ` R ) = ( Base ` O ) |
| 4 | 3 | a1i | |- ( R e. Grp -> ( Base ` R ) = ( Base ` O ) ) |
| 5 | eqidd | |- ( R e. Grp -> ( +g ` O ) = ( +g ` O ) ) |
|
| 6 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 7 | 1 6 | oppgid | |- ( 0g ` R ) = ( 0g ` O ) |
| 8 | 7 | a1i | |- ( R e. Grp -> ( 0g ` R ) = ( 0g ` O ) ) |
| 9 | grpmnd | |- ( R e. Grp -> R e. Mnd ) |
|
| 10 | 1 | oppgmnd | |- ( R e. Mnd -> O e. Mnd ) |
| 11 | 9 10 | syl | |- ( R e. Grp -> O e. Mnd ) |
| 12 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 13 | 2 12 | grpinvcl | |- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( invg ` R ) ` x ) e. ( Base ` R ) ) |
| 14 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 15 | eqid | |- ( +g ` O ) = ( +g ` O ) |
|
| 16 | 14 1 15 | oppgplus | |- ( ( ( invg ` R ) ` x ) ( +g ` O ) x ) = ( x ( +g ` R ) ( ( invg ` R ) ` x ) ) |
| 17 | 2 14 6 12 | grprinv | |- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( x ( +g ` R ) ( ( invg ` R ) ` x ) ) = ( 0g ` R ) ) |
| 18 | 16 17 | eqtrid | |- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( ( invg ` R ) ` x ) ( +g ` O ) x ) = ( 0g ` R ) ) |
| 19 | 4 5 8 11 13 18 | isgrpd2 | |- ( R e. Grp -> O e. Grp ) |