This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same hom-sets and composition, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppchomfpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| oppccomfpropd.1 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| Assertion | oppccomfpropd | |- ( ph -> ( comf ` ( oppCat ` C ) ) = ( comf ` ( oppCat ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppchomfpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 2 | oppccomfpropd.1 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 3 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 4 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 5 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 6 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 7 | 1 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 8 | 2 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 9 | simplr3 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> z e. ( Base ` C ) ) |
|
| 10 | simplr2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> y e. ( Base ` C ) ) |
|
| 11 | simplr1 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> x e. ( Base ` C ) ) |
|
| 12 | simprr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) |
|
| 13 | eqid | |- ( oppCat ` C ) = ( oppCat ` C ) |
|
| 14 | 4 13 | oppchom | |- ( y ( Hom ` ( oppCat ` C ) ) z ) = ( z ( Hom ` C ) y ) |
| 15 | 12 14 | eleqtrdi | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> g e. ( z ( Hom ` C ) y ) ) |
| 16 | simprl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> f e. ( x ( Hom ` ( oppCat ` C ) ) y ) ) |
|
| 17 | 4 13 | oppchom | |- ( x ( Hom ` ( oppCat ` C ) ) y ) = ( y ( Hom ` C ) x ) |
| 18 | 16 17 | eleqtrdi | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> f e. ( y ( Hom ` C ) x ) ) |
| 19 | 3 4 5 6 7 8 9 10 11 15 18 | comfeqval | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( f ( <. z , y >. ( comp ` C ) x ) g ) = ( f ( <. z , y >. ( comp ` D ) x ) g ) ) |
| 20 | 3 5 13 11 10 9 | oppcco | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( oppCat ` C ) ) z ) f ) = ( f ( <. z , y >. ( comp ` C ) x ) g ) ) |
| 21 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 22 | eqid | |- ( oppCat ` D ) = ( oppCat ` D ) |
|
| 23 | 1 | homfeqbas | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 24 | 23 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 25 | 11 24 | eleqtrd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> x e. ( Base ` D ) ) |
| 26 | 10 24 | eleqtrd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> y e. ( Base ` D ) ) |
| 27 | 9 24 | eleqtrd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> z e. ( Base ` D ) ) |
| 28 | 21 6 22 25 26 27 | oppcco | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( oppCat ` D ) ) z ) f ) = ( f ( <. z , y >. ( comp ` D ) x ) g ) ) |
| 29 | 19 20 28 | 3eqtr4d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( oppCat ` C ) ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` D ) ) z ) f ) ) |
| 30 | 29 | ralrimivva | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> A. f e. ( x ( Hom ` ( oppCat ` C ) ) y ) A. g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ( g ( <. x , y >. ( comp ` ( oppCat ` C ) ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` D ) ) z ) f ) ) |
| 31 | 30 | ralrimivvva | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` ( oppCat ` C ) ) y ) A. g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ( g ( <. x , y >. ( comp ` ( oppCat ` C ) ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` D ) ) z ) f ) ) |
| 32 | eqid | |- ( comp ` ( oppCat ` C ) ) = ( comp ` ( oppCat ` C ) ) |
|
| 33 | eqid | |- ( comp ` ( oppCat ` D ) ) = ( comp ` ( oppCat ` D ) ) |
|
| 34 | eqid | |- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
|
| 35 | 13 3 | oppcbas | |- ( Base ` C ) = ( Base ` ( oppCat ` C ) ) |
| 36 | 35 | a1i | |- ( ph -> ( Base ` C ) = ( Base ` ( oppCat ` C ) ) ) |
| 37 | 22 21 | oppcbas | |- ( Base ` D ) = ( Base ` ( oppCat ` D ) ) |
| 38 | 23 37 | eqtrdi | |- ( ph -> ( Base ` C ) = ( Base ` ( oppCat ` D ) ) ) |
| 39 | 1 | oppchomfpropd | |- ( ph -> ( Homf ` ( oppCat ` C ) ) = ( Homf ` ( oppCat ` D ) ) ) |
| 40 | 32 33 34 36 38 39 | comfeq | |- ( ph -> ( ( comf ` ( oppCat ` C ) ) = ( comf ` ( oppCat ` D ) ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` ( oppCat ` C ) ) y ) A. g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ( g ( <. x , y >. ( comp ` ( oppCat ` C ) ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` D ) ) z ) f ) ) ) |
| 41 | 31 40 | mpbird | |- ( ph -> ( comf ` ( oppCat ` C ) ) = ( comf ` ( oppCat ` D ) ) ) |