This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same hom-sets and composition, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppchomfpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| oppccomfpropd.1 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| Assertion | oppccomfpropd | ⊢ ( 𝜑 → ( compf ‘ ( oppCat ‘ 𝐶 ) ) = ( compf ‘ ( oppCat ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppchomfpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 2 | oppccomfpropd.1 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 4 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 5 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 7 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 8 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 9 | simplr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 10 | simplr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 11 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 12 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) | |
| 13 | eqid | ⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) | |
| 14 | 4 13 | oppchom | ⊢ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) |
| 15 | 12 14 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 16 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ) | |
| 17 | 4 13 | oppchom | ⊢ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 18 | 16 17 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 19 | 3 4 5 6 7 8 9 10 11 15 18 | comfeqval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑔 ) ) |
| 20 | 3 5 13 11 10 9 | oppcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) |
| 21 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 22 | eqid | ⊢ ( oppCat ‘ 𝐷 ) = ( oppCat ‘ 𝐷 ) | |
| 23 | 1 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 25 | 11 24 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) |
| 26 | 10 24 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 27 | 9 24 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐷 ) ) |
| 28 | 21 6 22 25 26 27 | oppcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝐷 ) ) 𝑧 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑔 ) ) |
| 29 | 19 20 28 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝐷 ) ) 𝑧 ) 𝑓 ) ) |
| 30 | 29 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝐷 ) ) 𝑧 ) 𝑓 ) ) |
| 31 | 30 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝐷 ) ) 𝑧 ) 𝑓 ) ) |
| 32 | eqid | ⊢ ( comp ‘ ( oppCat ‘ 𝐶 ) ) = ( comp ‘ ( oppCat ‘ 𝐶 ) ) | |
| 33 | eqid | ⊢ ( comp ‘ ( oppCat ‘ 𝐷 ) ) = ( comp ‘ ( oppCat ‘ 𝐷 ) ) | |
| 34 | eqid | ⊢ ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) ) | |
| 35 | 13 3 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
| 36 | 35 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 37 | 22 21 | oppcbas | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ ( oppCat ‘ 𝐷 ) ) |
| 38 | 23 37 | eqtrdi | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝐷 ) ) ) |
| 39 | 1 | oppchomfpropd | ⊢ ( 𝜑 → ( Homf ‘ ( oppCat ‘ 𝐶 ) ) = ( Homf ‘ ( oppCat ‘ 𝐷 ) ) ) |
| 40 | 32 33 34 36 38 39 | comfeq | ⊢ ( 𝜑 → ( ( compf ‘ ( oppCat ‘ 𝐶 ) ) = ( compf ‘ ( oppCat ‘ 𝐷 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝐷 ) ) 𝑧 ) 𝑓 ) ) ) |
| 41 | 31 40 | mpbird | ⊢ ( 𝜑 → ( compf ‘ ( oppCat ‘ 𝐶 ) ) = ( compf ‘ ( oppCat ‘ 𝐷 ) ) ) |