This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same hom-sets, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppchomfpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| Assertion | oppchomfpropd | |- ( ph -> ( Homf ` ( oppCat ` C ) ) = ( Homf ` ( oppCat ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppchomfpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 2 | 1 | tposeqd | |- ( ph -> tpos ( Homf ` C ) = tpos ( Homf ` D ) ) |
| 3 | eqid | |- ( oppCat ` C ) = ( oppCat ` C ) |
|
| 4 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 5 | 3 4 | oppchomf | |- tpos ( Homf ` C ) = ( Homf ` ( oppCat ` C ) ) |
| 6 | eqid | |- ( oppCat ` D ) = ( oppCat ` D ) |
|
| 7 | eqid | |- ( Homf ` D ) = ( Homf ` D ) |
|
| 8 | 6 7 | oppchomf | |- tpos ( Homf ` D ) = ( Homf ` ( oppCat ` D ) ) |
| 9 | 2 5 8 | 3eqtr3g | |- ( ph -> ( Homf ` ( oppCat ` C ) ) = ( Homf ` ( oppCat ` D ) ) ) |