This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: oppCat restricted to Cat is a function from Cat to Cat . (Contributed by Zhi Wang, 29-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppccatf | |- ( oppCat |` Cat ) : Cat --> Cat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oppc | |- oppCat = ( f e. _V |-> ( ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. ) ) |
|
| 2 | 1 | funmpt2 | |- Fun oppCat |
| 3 | ffvresb | |- ( Fun oppCat -> ( ( oppCat |` Cat ) : Cat --> Cat <-> A. c e. Cat ( c e. dom oppCat /\ ( oppCat ` c ) e. Cat ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( oppCat |` Cat ) : Cat --> Cat <-> A. c e. Cat ( c e. dom oppCat /\ ( oppCat ` c ) e. Cat ) ) |
| 5 | elex | |- ( c e. Cat -> c e. _V ) |
|
| 6 | ovex | |- ( ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. ) e. _V |
|
| 7 | 6 1 | dmmpti | |- dom oppCat = _V |
| 8 | 5 7 | eleqtrrdi | |- ( c e. Cat -> c e. dom oppCat ) |
| 9 | eqid | |- ( oppCat ` c ) = ( oppCat ` c ) |
|
| 10 | 9 | oppccat | |- ( c e. Cat -> ( oppCat ` c ) e. Cat ) |
| 11 | 8 10 | jca | |- ( c e. Cat -> ( c e. dom oppCat /\ ( oppCat ` c ) e. Cat ) ) |
| 12 | 4 11 | mprgbir | |- ( oppCat |` Cat ) : Cat --> Cat |