This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014) (Revised by Mario Carneiro, 20-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opnreen | |- ( ( A e. ( topGen ` ran (,) ) /\ A =/= (/) ) -> A ~~ ~P NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex | |- RR e. _V |
|
| 2 | elssuni | |- ( A e. ( topGen ` ran (,) ) -> A C_ U. ( topGen ` ran (,) ) ) |
|
| 3 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 4 | 2 3 | sseqtrrdi | |- ( A e. ( topGen ` ran (,) ) -> A C_ RR ) |
| 5 | ssdomg | |- ( RR e. _V -> ( A C_ RR -> A ~<_ RR ) ) |
|
| 6 | 1 4 5 | mpsyl | |- ( A e. ( topGen ` ran (,) ) -> A ~<_ RR ) |
| 7 | rpnnen | |- RR ~~ ~P NN |
|
| 8 | domentr | |- ( ( A ~<_ RR /\ RR ~~ ~P NN ) -> A ~<_ ~P NN ) |
|
| 9 | 6 7 8 | sylancl | |- ( A e. ( topGen ` ran (,) ) -> A ~<_ ~P NN ) |
| 10 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
| 11 | 4 | sselda | |- ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> x e. RR ) |
| 12 | rpnnen2 | |- ~P NN ~<_ ( 0 [,] 1 ) |
|
| 13 | rphalfcl | |- ( y e. RR+ -> ( y / 2 ) e. RR+ ) |
|
| 14 | 13 | rpred | |- ( y e. RR+ -> ( y / 2 ) e. RR ) |
| 15 | resubcl | |- ( ( x e. RR /\ ( y / 2 ) e. RR ) -> ( x - ( y / 2 ) ) e. RR ) |
|
| 16 | 14 15 | sylan2 | |- ( ( x e. RR /\ y e. RR+ ) -> ( x - ( y / 2 ) ) e. RR ) |
| 17 | readdcl | |- ( ( x e. RR /\ ( y / 2 ) e. RR ) -> ( x + ( y / 2 ) ) e. RR ) |
|
| 18 | 14 17 | sylan2 | |- ( ( x e. RR /\ y e. RR+ ) -> ( x + ( y / 2 ) ) e. RR ) |
| 19 | simpl | |- ( ( x e. RR /\ y e. RR+ ) -> x e. RR ) |
|
| 20 | ltsubrp | |- ( ( x e. RR /\ ( y / 2 ) e. RR+ ) -> ( x - ( y / 2 ) ) < x ) |
|
| 21 | 13 20 | sylan2 | |- ( ( x e. RR /\ y e. RR+ ) -> ( x - ( y / 2 ) ) < x ) |
| 22 | ltaddrp | |- ( ( x e. RR /\ ( y / 2 ) e. RR+ ) -> x < ( x + ( y / 2 ) ) ) |
|
| 23 | 13 22 | sylan2 | |- ( ( x e. RR /\ y e. RR+ ) -> x < ( x + ( y / 2 ) ) ) |
| 24 | 16 19 18 21 23 | lttrd | |- ( ( x e. RR /\ y e. RR+ ) -> ( x - ( y / 2 ) ) < ( x + ( y / 2 ) ) ) |
| 25 | iccen | |- ( ( ( x - ( y / 2 ) ) e. RR /\ ( x + ( y / 2 ) ) e. RR /\ ( x - ( y / 2 ) ) < ( x + ( y / 2 ) ) ) -> ( 0 [,] 1 ) ~~ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ) |
|
| 26 | 16 18 24 25 | syl3anc | |- ( ( x e. RR /\ y e. RR+ ) -> ( 0 [,] 1 ) ~~ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ) |
| 27 | domentr | |- ( ( ~P NN ~<_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) ~~ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ) -> ~P NN ~<_ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ) |
|
| 28 | 12 26 27 | sylancr | |- ( ( x e. RR /\ y e. RR+ ) -> ~P NN ~<_ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ) |
| 29 | ovex | |- ( ( x - y ) (,) ( x + y ) ) e. _V |
|
| 30 | rpre | |- ( y e. RR+ -> y e. RR ) |
|
| 31 | resubcl | |- ( ( x e. RR /\ y e. RR ) -> ( x - y ) e. RR ) |
|
| 32 | 30 31 | sylan2 | |- ( ( x e. RR /\ y e. RR+ ) -> ( x - y ) e. RR ) |
| 33 | 32 | rexrd | |- ( ( x e. RR /\ y e. RR+ ) -> ( x - y ) e. RR* ) |
| 34 | readdcl | |- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
|
| 35 | 30 34 | sylan2 | |- ( ( x e. RR /\ y e. RR+ ) -> ( x + y ) e. RR ) |
| 36 | 35 | rexrd | |- ( ( x e. RR /\ y e. RR+ ) -> ( x + y ) e. RR* ) |
| 37 | 19 | recnd | |- ( ( x e. RR /\ y e. RR+ ) -> x e. CC ) |
| 38 | 14 | adantl | |- ( ( x e. RR /\ y e. RR+ ) -> ( y / 2 ) e. RR ) |
| 39 | 38 | recnd | |- ( ( x e. RR /\ y e. RR+ ) -> ( y / 2 ) e. CC ) |
| 40 | 37 39 39 | subsub4d | |- ( ( x e. RR /\ y e. RR+ ) -> ( ( x - ( y / 2 ) ) - ( y / 2 ) ) = ( x - ( ( y / 2 ) + ( y / 2 ) ) ) ) |
| 41 | 30 | adantl | |- ( ( x e. RR /\ y e. RR+ ) -> y e. RR ) |
| 42 | 41 | recnd | |- ( ( x e. RR /\ y e. RR+ ) -> y e. CC ) |
| 43 | 42 | 2halvesd | |- ( ( x e. RR /\ y e. RR+ ) -> ( ( y / 2 ) + ( y / 2 ) ) = y ) |
| 44 | 43 | oveq2d | |- ( ( x e. RR /\ y e. RR+ ) -> ( x - ( ( y / 2 ) + ( y / 2 ) ) ) = ( x - y ) ) |
| 45 | 40 44 | eqtrd | |- ( ( x e. RR /\ y e. RR+ ) -> ( ( x - ( y / 2 ) ) - ( y / 2 ) ) = ( x - y ) ) |
| 46 | 13 | adantl | |- ( ( x e. RR /\ y e. RR+ ) -> ( y / 2 ) e. RR+ ) |
| 47 | 16 46 | ltsubrpd | |- ( ( x e. RR /\ y e. RR+ ) -> ( ( x - ( y / 2 ) ) - ( y / 2 ) ) < ( x - ( y / 2 ) ) ) |
| 48 | 45 47 | eqbrtrrd | |- ( ( x e. RR /\ y e. RR+ ) -> ( x - y ) < ( x - ( y / 2 ) ) ) |
| 49 | 18 46 | ltaddrpd | |- ( ( x e. RR /\ y e. RR+ ) -> ( x + ( y / 2 ) ) < ( ( x + ( y / 2 ) ) + ( y / 2 ) ) ) |
| 50 | 37 39 39 | addassd | |- ( ( x e. RR /\ y e. RR+ ) -> ( ( x + ( y / 2 ) ) + ( y / 2 ) ) = ( x + ( ( y / 2 ) + ( y / 2 ) ) ) ) |
| 51 | 43 | oveq2d | |- ( ( x e. RR /\ y e. RR+ ) -> ( x + ( ( y / 2 ) + ( y / 2 ) ) ) = ( x + y ) ) |
| 52 | 50 51 | eqtrd | |- ( ( x e. RR /\ y e. RR+ ) -> ( ( x + ( y / 2 ) ) + ( y / 2 ) ) = ( x + y ) ) |
| 53 | 49 52 | breqtrd | |- ( ( x e. RR /\ y e. RR+ ) -> ( x + ( y / 2 ) ) < ( x + y ) ) |
| 54 | iccssioo | |- ( ( ( ( x - y ) e. RR* /\ ( x + y ) e. RR* ) /\ ( ( x - y ) < ( x - ( y / 2 ) ) /\ ( x + ( y / 2 ) ) < ( x + y ) ) ) -> ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) C_ ( ( x - y ) (,) ( x + y ) ) ) |
|
| 55 | 33 36 48 53 54 | syl22anc | |- ( ( x e. RR /\ y e. RR+ ) -> ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) C_ ( ( x - y ) (,) ( x + y ) ) ) |
| 56 | ssdomg | |- ( ( ( x - y ) (,) ( x + y ) ) e. _V -> ( ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) C_ ( ( x - y ) (,) ( x + y ) ) -> ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ~<_ ( ( x - y ) (,) ( x + y ) ) ) ) |
|
| 57 | 29 55 56 | mpsyl | |- ( ( x e. RR /\ y e. RR+ ) -> ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ~<_ ( ( x - y ) (,) ( x + y ) ) ) |
| 58 | domtr | |- ( ( ~P NN ~<_ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) /\ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ~<_ ( ( x - y ) (,) ( x + y ) ) ) -> ~P NN ~<_ ( ( x - y ) (,) ( x + y ) ) ) |
|
| 59 | 28 57 58 | syl2anc | |- ( ( x e. RR /\ y e. RR+ ) -> ~P NN ~<_ ( ( x - y ) (,) ( x + y ) ) ) |
| 60 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 61 | 60 | bl2ioo | |- ( ( x e. RR /\ y e. RR ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) = ( ( x - y ) (,) ( x + y ) ) ) |
| 62 | 30 61 | sylan2 | |- ( ( x e. RR /\ y e. RR+ ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) = ( ( x - y ) (,) ( x + y ) ) ) |
| 63 | 59 62 | breqtrrd | |- ( ( x e. RR /\ y e. RR+ ) -> ~P NN ~<_ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) ) |
| 64 | 11 63 | sylan | |- ( ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) -> ~P NN ~<_ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) ) |
| 65 | simplll | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) -> A e. ( topGen ` ran (,) ) ) |
|
| 66 | simpr | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) |
|
| 67 | ssdomg | |- ( A e. ( topGen ` ran (,) ) -> ( ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) ~<_ A ) ) |
|
| 68 | 65 66 67 | sylc | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) ~<_ A ) |
| 69 | domtr | |- ( ( ~P NN ~<_ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) ~<_ A ) -> ~P NN ~<_ A ) |
|
| 70 | 64 68 69 | syl2an2r | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) -> ~P NN ~<_ A ) |
| 71 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
|
| 72 | 60 71 | tgioo | |- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 73 | 72 | eleq2i | |- ( A e. ( topGen ` ran (,) ) <-> A e. ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ) |
| 74 | 60 | rexmet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 75 | 71 | mopni2 | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) /\ x e. A ) -> E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) |
| 76 | 74 75 | mp3an1 | |- ( ( A e. ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) /\ x e. A ) -> E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) |
| 77 | 73 76 | sylanb | |- ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) |
| 78 | 70 77 | r19.29a | |- ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> ~P NN ~<_ A ) |
| 79 | 78 | ex | |- ( A e. ( topGen ` ran (,) ) -> ( x e. A -> ~P NN ~<_ A ) ) |
| 80 | 79 | exlimdv | |- ( A e. ( topGen ` ran (,) ) -> ( E. x x e. A -> ~P NN ~<_ A ) ) |
| 81 | 10 80 | biimtrid | |- ( A e. ( topGen ` ran (,) ) -> ( A =/= (/) -> ~P NN ~<_ A ) ) |
| 82 | 81 | imp | |- ( ( A e. ( topGen ` ran (,) ) /\ A =/= (/) ) -> ~P NN ~<_ A ) |
| 83 | sbth | |- ( ( A ~<_ ~P NN /\ ~P NN ~<_ A ) -> A ~~ ~P NN ) |
|
| 84 | 9 82 83 | syl2an2r | |- ( ( A e. ( topGen ` ran (,) ) /\ A =/= (/) ) -> A ~~ ~P NN ) |