This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A countable subset of the reals has empty interior. (Contributed by Mario Carneiro, 26-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rectbntr0 | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex | |- NN e. _V |
|
| 2 | 1 | canth2 | |- NN ~< ~P NN |
| 3 | domnsym | |- ( ~P NN ~<_ NN -> -. NN ~< ~P NN ) |
|
| 4 | 2 3 | mt2 | |- -. ~P NN ~<_ NN |
| 5 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 6 | simpl | |- ( ( A C_ RR /\ A ~<_ NN ) -> A C_ RR ) |
|
| 7 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 8 | 7 | ntropn | |- ( ( ( topGen ` ran (,) ) e. Top /\ A C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) e. ( topGen ` ran (,) ) ) |
| 9 | 5 6 8 | sylancr | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) e. ( topGen ` ran (,) ) ) |
| 10 | opnreen | |- ( ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) e. ( topGen ` ran (,) ) /\ ( ( int ` ( topGen ` ran (,) ) ) ` A ) =/= (/) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~~ ~P NN ) |
|
| 11 | 10 | ex | |- ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) e. ( topGen ` ran (,) ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) =/= (/) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~~ ~P NN ) ) |
| 12 | 9 11 | syl | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) =/= (/) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~~ ~P NN ) ) |
| 13 | reex | |- RR e. _V |
|
| 14 | 13 | ssex | |- ( A C_ RR -> A e. _V ) |
| 15 | 7 | ntrss2 | |- ( ( ( topGen ` ran (,) ) e. Top /\ A C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) C_ A ) |
| 16 | 5 15 | mpan | |- ( A C_ RR -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) C_ A ) |
| 17 | ssdomg | |- ( A e. _V -> ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) C_ A -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ A ) ) |
|
| 18 | 14 16 17 | sylc | |- ( A C_ RR -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ A ) |
| 19 | domtr | |- ( ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ A /\ A ~<_ NN ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ NN ) |
|
| 20 | 18 19 | sylan | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ NN ) |
| 21 | ensym | |- ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~~ ~P NN -> ~P NN ~~ ( ( int ` ( topGen ` ran (,) ) ) ` A ) ) |
|
| 22 | endomtr | |- ( ( ~P NN ~~ ( ( int ` ( topGen ` ran (,) ) ) ` A ) /\ ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ NN ) -> ~P NN ~<_ NN ) |
|
| 23 | 22 | expcom | |- ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ NN -> ( ~P NN ~~ ( ( int ` ( topGen ` ran (,) ) ) ` A ) -> ~P NN ~<_ NN ) ) |
| 24 | 20 21 23 | syl2im | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~~ ~P NN -> ~P NN ~<_ NN ) ) |
| 25 | 12 24 | syld | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) =/= (/) -> ~P NN ~<_ NN ) ) |
| 26 | 25 | necon1bd | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( -. ~P NN ~<_ NN -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) = (/) ) ) |
| 27 | 4 26 | mpi | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) = (/) ) |