This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfrALTlem2 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> E. y e. a ( a i^i y ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> z e. ( a i^i y ) ) |
|
| 2 | 1 | 2a1i | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> z e. ( a i^i y ) ) ) ) |
| 3 | inss2 | |- ( a i^i y ) C_ y |
|
| 4 | 3 | sseli | |- ( z e. ( a i^i y ) -> z e. y ) |
| 5 | 2 4 | syl8 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> z e. y ) ) ) |
| 6 | inss1 | |- ( a i^i y ) C_ a |
|
| 7 | 6 | sseli | |- ( z e. ( a i^i y ) -> z e. a ) |
| 8 | 2 7 | syl8 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> z e. a ) ) ) |
| 9 | simpl | |- ( ( a C_ On /\ a =/= (/) ) -> a C_ On ) |
|
| 10 | simpl | |- ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> x e. a ) |
|
| 11 | ssel | |- ( a C_ On -> ( x e. a -> x e. On ) ) |
|
| 12 | 9 10 11 | syl2im | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> x e. On ) ) |
| 13 | eloni | |- ( x e. On -> Ord x ) |
|
| 14 | 12 13 | syl6 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> Ord x ) ) |
| 15 | ordtr | |- ( Ord x -> Tr x ) |
|
| 16 | 14 15 | syl6 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> Tr x ) ) |
| 17 | simpll | |- ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> y e. ( a i^i x ) ) |
|
| 18 | 17 | 2a1i | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> y e. ( a i^i x ) ) ) ) |
| 19 | inss2 | |- ( a i^i x ) C_ x |
|
| 20 | 19 | sseli | |- ( y e. ( a i^i x ) -> y e. x ) |
| 21 | 18 20 | syl8 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> y e. x ) ) ) |
| 22 | trel | |- ( Tr x -> ( ( z e. y /\ y e. x ) -> z e. x ) ) |
|
| 23 | 22 | expcomd | |- ( Tr x -> ( y e. x -> ( z e. y -> z e. x ) ) ) |
| 24 | 16 21 5 23 | ee233 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> z e. x ) ) ) |
| 25 | elin | |- ( z e. ( a i^i x ) <-> ( z e. a /\ z e. x ) ) |
|
| 26 | 25 | simplbi2 | |- ( z e. a -> ( z e. x -> z e. ( a i^i x ) ) ) |
| 27 | 8 24 26 | ee33 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> z e. ( a i^i x ) ) ) ) |
| 28 | elin | |- ( z e. ( ( a i^i x ) i^i y ) <-> ( z e. ( a i^i x ) /\ z e. y ) ) |
|
| 29 | 28 | simplbi2com | |- ( z e. y -> ( z e. ( a i^i x ) -> z e. ( ( a i^i x ) i^i y ) ) ) |
| 30 | 5 27 29 | ee33 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> z e. ( ( a i^i x ) i^i y ) ) ) ) |
| 31 | 30 | exp4a | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) ) ) ) |
| 32 | 31 | ggen31 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> A. z ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) ) ) ) |
| 33 | df-ss | |- ( ( a i^i y ) C_ ( ( a i^i x ) i^i y ) <-> A. z ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) ) |
|
| 34 | 33 | biimpri | |- ( A. z ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) -> ( a i^i y ) C_ ( ( a i^i x ) i^i y ) ) |
| 35 | 32 34 | syl8 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( a i^i y ) C_ ( ( a i^i x ) i^i y ) ) ) ) |
| 36 | simpr | |- ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( ( a i^i x ) i^i y ) = (/) ) |
|
| 37 | 36 | 2a1i | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( ( a i^i x ) i^i y ) = (/) ) ) ) |
| 38 | sseq0 | |- ( ( ( a i^i y ) C_ ( ( a i^i x ) i^i y ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( a i^i y ) = (/) ) |
|
| 39 | 38 | ex | |- ( ( a i^i y ) C_ ( ( a i^i x ) i^i y ) -> ( ( ( a i^i x ) i^i y ) = (/) -> ( a i^i y ) = (/) ) ) |
| 40 | 35 37 39 | ee33 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( a i^i y ) = (/) ) ) ) |
| 41 | simpl | |- ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> y e. ( a i^i x ) ) |
|
| 42 | 41 | 2a1i | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> y e. ( a i^i x ) ) ) ) |
| 43 | inss1 | |- ( a i^i x ) C_ a |
|
| 44 | 43 | sseli | |- ( y e. ( a i^i x ) -> y e. a ) |
| 45 | 42 44 | syl8 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> y e. a ) ) ) |
| 46 | pm3.21 | |- ( ( a i^i y ) = (/) -> ( y e. a -> ( y e. a /\ ( a i^i y ) = (/) ) ) ) |
|
| 47 | 40 45 46 | ee33 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) ) ) |
| 48 | 47 | alrimdv | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> A. y ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) ) ) |
| 49 | onfrALTlem3 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
|
| 50 | df-rex | |- ( E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
|
| 51 | 49 50 | imbitrdi | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) ) |
| 52 | exim | |- ( A. y ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) -> ( E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) ) |
|
| 53 | 48 51 52 | syl6c | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) ) |
| 54 | df-rex | |- ( E. y e. a ( a i^i y ) = (/) <-> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) |
|
| 55 | 53 54 | imbitrrdi | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> E. y e. a ( a i^i y ) = (/) ) ) |