This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfrALTlem3 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- ( a i^i x ) C_ ( a i^i x ) |
|
| 2 | simpr | |- ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> -. ( a i^i x ) = (/) ) |
|
| 3 | 2 | a1i | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> -. ( a i^i x ) = (/) ) ) |
| 4 | df-ne | |- ( ( a i^i x ) =/= (/) <-> -. ( a i^i x ) = (/) ) |
|
| 5 | 3 4 | imbitrrdi | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( a i^i x ) =/= (/) ) ) |
| 6 | pm3.2 | |- ( ( a i^i x ) C_ ( a i^i x ) -> ( ( a i^i x ) =/= (/) -> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) ) |
|
| 7 | 1 5 6 | mpsylsyld | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) ) |
| 8 | vex | |- x e. _V |
|
| 9 | 8 | inex2 | |- ( a i^i x ) e. _V |
| 10 | inss2 | |- ( a i^i x ) C_ x |
|
| 11 | simpl | |- ( ( a C_ On /\ a =/= (/) ) -> a C_ On ) |
|
| 12 | simpl | |- ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> x e. a ) |
|
| 13 | ssel | |- ( a C_ On -> ( x e. a -> x e. On ) ) |
|
| 14 | 11 12 13 | syl2im | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> x e. On ) ) |
| 15 | eloni | |- ( x e. On -> Ord x ) |
|
| 16 | 14 15 | syl6 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> Ord x ) ) |
| 17 | ordwe | |- ( Ord x -> _E We x ) |
|
| 18 | 16 17 | syl6 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> _E We x ) ) |
| 19 | wess | |- ( ( a i^i x ) C_ x -> ( _E We x -> _E We ( a i^i x ) ) ) |
|
| 20 | 10 18 19 | mpsylsyld | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> _E We ( a i^i x ) ) ) |
| 21 | wefr | |- ( _E We ( a i^i x ) -> _E Fr ( a i^i x ) ) |
|
| 22 | 20 21 | syl6 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> _E Fr ( a i^i x ) ) ) |
| 23 | dfepfr | |- ( _E Fr ( a i^i x ) <-> A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ) |
|
| 24 | 22 23 | imbitrdi | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ) ) |
| 25 | spsbc | |- ( ( a i^i x ) e. _V -> ( A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) -> [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ) ) |
|
| 26 | 9 24 25 | mpsylsyld | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ) ) |
| 27 | onfrALTlem5 | |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
|
| 28 | 26 27 | imbitrdi | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) ) |
| 29 | 7 28 | mpdd | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |