This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfrALTlem2 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) | |
| 2 | 1 | 2a1i | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ) ) |
| 3 | inss2 | ⊢ ( 𝑎 ∩ 𝑦 ) ⊆ 𝑦 | |
| 4 | 3 | sseli | ⊢ ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ 𝑦 ) |
| 5 | 2 4 | syl8 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ 𝑦 ) ) ) |
| 6 | inss1 | ⊢ ( 𝑎 ∩ 𝑦 ) ⊆ 𝑎 | |
| 7 | 6 | sseli | ⊢ ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ 𝑎 ) |
| 8 | 2 7 | syl8 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ 𝑎 ) ) ) |
| 9 | simpl | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → 𝑎 ⊆ On ) | |
| 10 | simpl | ⊢ ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → 𝑥 ∈ 𝑎 ) | |
| 11 | ssel | ⊢ ( 𝑎 ⊆ On → ( 𝑥 ∈ 𝑎 → 𝑥 ∈ On ) ) | |
| 12 | 9 10 11 | syl2im | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → 𝑥 ∈ On ) ) |
| 13 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 14 | 12 13 | syl6 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → Ord 𝑥 ) ) |
| 15 | ordtr | ⊢ ( Ord 𝑥 → Tr 𝑥 ) | |
| 16 | 14 15 | syl6 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → Tr 𝑥 ) ) |
| 17 | simpll | ⊢ ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) | |
| 18 | 17 | 2a1i | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) ) ) |
| 19 | inss2 | ⊢ ( 𝑎 ∩ 𝑥 ) ⊆ 𝑥 | |
| 20 | 19 | sseli | ⊢ ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
| 21 | 18 20 | syl8 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑦 ∈ 𝑥 ) ) ) |
| 22 | trel | ⊢ ( Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) | |
| 23 | 22 | expcomd | ⊢ ( Tr 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 24 | 16 21 5 23 | ee233 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ 𝑥 ) ) ) |
| 25 | elin | ⊢ ( 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ↔ ( 𝑧 ∈ 𝑎 ∧ 𝑧 ∈ 𝑥 ) ) | |
| 26 | 25 | simplbi2 | ⊢ ( 𝑧 ∈ 𝑎 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ) ) |
| 27 | 8 24 26 | ee33 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ) ) ) |
| 28 | elin | ⊢ ( 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ↔ ( 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ∧ 𝑧 ∈ 𝑦 ) ) | |
| 29 | 28 | simplbi2com | ⊢ ( 𝑧 ∈ 𝑦 → ( 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) |
| 30 | 5 27 29 | ee33 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) ) |
| 31 | 30 | exp4a | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) ) ) |
| 32 | 31 | ggen31 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ∀ 𝑧 ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) ) ) |
| 33 | df-ss | ⊢ ( ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) | |
| 34 | 33 | biimpri | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) → ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) |
| 35 | 32 34 | syl8 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) ) |
| 36 | simpr | ⊢ ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) | |
| 37 | 36 | 2a1i | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) ) |
| 38 | sseq0 | ⊢ ( ( ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑎 ∩ 𝑦 ) = ∅ ) | |
| 39 | 38 | ex | ⊢ ( ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) → ( ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ → ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 40 | 35 37 39 | ee33 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
| 41 | simpl | ⊢ ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) | |
| 42 | 41 | 2a1i | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) ) ) |
| 43 | inss1 | ⊢ ( 𝑎 ∩ 𝑥 ) ⊆ 𝑎 | |
| 44 | 43 | sseli | ⊢ ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) → 𝑦 ∈ 𝑎 ) |
| 45 | 42 44 | syl8 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → 𝑦 ∈ 𝑎 ) ) ) |
| 46 | pm3.21 | ⊢ ( ( 𝑎 ∩ 𝑦 ) = ∅ → ( 𝑦 ∈ 𝑎 → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) | |
| 47 | 40 45 46 | ee33 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) ) |
| 48 | 47 | alrimdv | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∀ 𝑦 ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) ) |
| 49 | onfrALTlem3 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) | |
| 50 | df-rex | ⊢ ( ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) | |
| 51 | 49 50 | imbitrdi | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) ) |
| 52 | exim | ⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) → ( ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) | |
| 53 | 48 51 52 | syl6c | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
| 54 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) | |
| 55 | 53 54 | imbitrrdi | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |