This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered pair theorem for _om . Theorem 17.3 of Quine p. 124. This proof is adapted from nn0opthi . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omopth.1 | |- A e. _om |
|
| omopth.2 | |- B e. _om |
||
| omopth.3 | |- C e. _om |
||
| omopth.4 | |- D e. _om |
||
| Assertion | omopthi | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) <-> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omopth.1 | |- A e. _om |
|
| 2 | omopth.2 | |- B e. _om |
|
| 3 | omopth.3 | |- C e. _om |
|
| 4 | omopth.4 | |- D e. _om |
|
| 5 | 1 2 | nnacli | |- ( A +o B ) e. _om |
| 6 | 5 | nnoni | |- ( A +o B ) e. On |
| 7 | 6 | onordi | |- Ord ( A +o B ) |
| 8 | 3 4 | nnacli | |- ( C +o D ) e. _om |
| 9 | 8 | nnoni | |- ( C +o D ) e. On |
| 10 | 9 | onordi | |- Ord ( C +o D ) |
| 11 | ordtri3 | |- ( ( Ord ( A +o B ) /\ Ord ( C +o D ) ) -> ( ( A +o B ) = ( C +o D ) <-> -. ( ( A +o B ) e. ( C +o D ) \/ ( C +o D ) e. ( A +o B ) ) ) ) |
|
| 12 | 7 10 11 | mp2an | |- ( ( A +o B ) = ( C +o D ) <-> -. ( ( A +o B ) e. ( C +o D ) \/ ( C +o D ) e. ( A +o B ) ) ) |
| 13 | 12 | con2bii | |- ( ( ( A +o B ) e. ( C +o D ) \/ ( C +o D ) e. ( A +o B ) ) <-> -. ( A +o B ) = ( C +o D ) ) |
| 14 | 1 2 8 4 | omopthlem2 | |- ( ( A +o B ) e. ( C +o D ) -> -. ( ( ( C +o D ) .o ( C +o D ) ) +o D ) = ( ( ( A +o B ) .o ( A +o B ) ) +o B ) ) |
| 15 | eqcom | |- ( ( ( ( C +o D ) .o ( C +o D ) ) +o D ) = ( ( ( A +o B ) .o ( A +o B ) ) +o B ) <-> ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) ) |
|
| 16 | 14 15 | sylnib | |- ( ( A +o B ) e. ( C +o D ) -> -. ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) ) |
| 17 | 3 4 5 2 | omopthlem2 | |- ( ( C +o D ) e. ( A +o B ) -> -. ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) ) |
| 18 | 16 17 | jaoi | |- ( ( ( A +o B ) e. ( C +o D ) \/ ( C +o D ) e. ( A +o B ) ) -> -. ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) ) |
| 19 | 13 18 | sylbir | |- ( -. ( A +o B ) = ( C +o D ) -> -. ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) ) |
| 20 | 19 | con4i | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) -> ( A +o B ) = ( C +o D ) ) |
| 21 | id | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) -> ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) ) |
|
| 22 | 20 20 | oveq12d | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) -> ( ( A +o B ) .o ( A +o B ) ) = ( ( C +o D ) .o ( C +o D ) ) ) |
| 23 | 22 | oveq1d | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) -> ( ( ( A +o B ) .o ( A +o B ) ) +o D ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) ) |
| 24 | 21 23 | eqtr4d | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) -> ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( A +o B ) .o ( A +o B ) ) +o D ) ) |
| 25 | 5 5 | nnmcli | |- ( ( A +o B ) .o ( A +o B ) ) e. _om |
| 26 | nnacan | |- ( ( ( ( A +o B ) .o ( A +o B ) ) e. _om /\ B e. _om /\ D e. _om ) -> ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( A +o B ) .o ( A +o B ) ) +o D ) <-> B = D ) ) |
|
| 27 | 25 2 4 26 | mp3an | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( A +o B ) .o ( A +o B ) ) +o D ) <-> B = D ) |
| 28 | 24 27 | sylib | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) -> B = D ) |
| 29 | 28 | oveq2d | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) -> ( C +o B ) = ( C +o D ) ) |
| 30 | 20 29 | eqtr4d | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) -> ( A +o B ) = ( C +o B ) ) |
| 31 | nnacom | |- ( ( B e. _om /\ A e. _om ) -> ( B +o A ) = ( A +o B ) ) |
|
| 32 | 2 1 31 | mp2an | |- ( B +o A ) = ( A +o B ) |
| 33 | nnacom | |- ( ( B e. _om /\ C e. _om ) -> ( B +o C ) = ( C +o B ) ) |
|
| 34 | 2 3 33 | mp2an | |- ( B +o C ) = ( C +o B ) |
| 35 | 30 32 34 | 3eqtr4g | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) -> ( B +o A ) = ( B +o C ) ) |
| 36 | nnacan | |- ( ( B e. _om /\ A e. _om /\ C e. _om ) -> ( ( B +o A ) = ( B +o C ) <-> A = C ) ) |
|
| 37 | 2 1 3 36 | mp3an | |- ( ( B +o A ) = ( B +o C ) <-> A = C ) |
| 38 | 35 37 | sylib | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) -> A = C ) |
| 39 | 38 28 | jca | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) -> ( A = C /\ B = D ) ) |
| 40 | oveq12 | |- ( ( A = C /\ B = D ) -> ( A +o B ) = ( C +o D ) ) |
|
| 41 | 40 40 | oveq12d | |- ( ( A = C /\ B = D ) -> ( ( A +o B ) .o ( A +o B ) ) = ( ( C +o D ) .o ( C +o D ) ) ) |
| 42 | simpr | |- ( ( A = C /\ B = D ) -> B = D ) |
|
| 43 | 41 42 | oveq12d | |- ( ( A = C /\ B = D ) -> ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) ) |
| 44 | 39 43 | impbii | |- ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( ( ( C +o D ) .o ( C +o D ) ) +o D ) <-> ( A = C /\ B = D ) ) |