This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnacan | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( A +o B ) = ( A +o C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaword | |- ( ( B e. _om /\ C e. _om /\ A e. _om ) -> ( B C_ C <-> ( A +o B ) C_ ( A +o C ) ) ) |
|
| 2 | 1 | 3comr | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( B C_ C <-> ( A +o B ) C_ ( A +o C ) ) ) |
| 3 | nnaword | |- ( ( C e. _om /\ B e. _om /\ A e. _om ) -> ( C C_ B <-> ( A +o C ) C_ ( A +o B ) ) ) |
|
| 4 | 3 | 3com13 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( C C_ B <-> ( A +o C ) C_ ( A +o B ) ) ) |
| 5 | 2 4 | anbi12d | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( B C_ C /\ C C_ B ) <-> ( ( A +o B ) C_ ( A +o C ) /\ ( A +o C ) C_ ( A +o B ) ) ) ) |
| 6 | 5 | bicomd | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( ( A +o B ) C_ ( A +o C ) /\ ( A +o C ) C_ ( A +o B ) ) <-> ( B C_ C /\ C C_ B ) ) ) |
| 7 | eqss | |- ( ( A +o B ) = ( A +o C ) <-> ( ( A +o B ) C_ ( A +o C ) /\ ( A +o C ) C_ ( A +o B ) ) ) |
|
| 8 | eqss | |- ( B = C <-> ( B C_ C /\ C C_ B ) ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( A +o B ) = ( A +o C ) <-> B = C ) ) |