This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of Quine p. 124. We can represent an ordered pair of nonnegative integers A and B by ( ( ( A + B ) x. ( A + B ) ) + B ) . If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op that works for any set. (Contributed by Raph Levien, 10-Dec-2002) (Proof shortened by Scott Fenton, 8-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0opth.1 | |- A e. NN0 |
|
| nn0opth.2 | |- B e. NN0 |
||
| nn0opth.3 | |- C e. NN0 |
||
| nn0opth.4 | |- D e. NN0 |
||
| Assertion | nn0opthi | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) <-> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opth.1 | |- A e. NN0 |
|
| 2 | nn0opth.2 | |- B e. NN0 |
|
| 3 | nn0opth.3 | |- C e. NN0 |
|
| 4 | nn0opth.4 | |- D e. NN0 |
|
| 5 | 1 2 | nn0addcli | |- ( A + B ) e. NN0 |
| 6 | 5 | nn0rei | |- ( A + B ) e. RR |
| 7 | 3 4 | nn0addcli | |- ( C + D ) e. NN0 |
| 8 | 7 | nn0rei | |- ( C + D ) e. RR |
| 9 | 6 8 | lttri2i | |- ( ( A + B ) =/= ( C + D ) <-> ( ( A + B ) < ( C + D ) \/ ( C + D ) < ( A + B ) ) ) |
| 10 | 1 2 7 4 | nn0opthlem2 | |- ( ( A + B ) < ( C + D ) -> ( ( ( C + D ) x. ( C + D ) ) + D ) =/= ( ( ( A + B ) x. ( A + B ) ) + B ) ) |
| 11 | 10 | necomd | |- ( ( A + B ) < ( C + D ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) =/= ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
| 12 | 3 4 5 2 | nn0opthlem2 | |- ( ( C + D ) < ( A + B ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) =/= ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
| 13 | 11 12 | jaoi | |- ( ( ( A + B ) < ( C + D ) \/ ( C + D ) < ( A + B ) ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) =/= ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
| 14 | 9 13 | sylbi | |- ( ( A + B ) =/= ( C + D ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) =/= ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
| 15 | 14 | necon4i | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( A + B ) = ( C + D ) ) |
| 16 | id | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
|
| 17 | 15 15 | oveq12d | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( ( A + B ) x. ( A + B ) ) = ( ( C + D ) x. ( C + D ) ) ) |
| 18 | 17 | oveq1d | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( ( ( A + B ) x. ( A + B ) ) + D ) = ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
| 19 | 16 18 | eqtr4d | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( A + B ) x. ( A + B ) ) + D ) ) |
| 20 | 5 | nn0cni | |- ( A + B ) e. CC |
| 21 | 20 20 | mulcli | |- ( ( A + B ) x. ( A + B ) ) e. CC |
| 22 | 2 | nn0cni | |- B e. CC |
| 23 | 4 | nn0cni | |- D e. CC |
| 24 | 21 22 23 | addcani | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( A + B ) x. ( A + B ) ) + D ) <-> B = D ) |
| 25 | 19 24 | sylib | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> B = D ) |
| 26 | 25 | oveq2d | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( C + B ) = ( C + D ) ) |
| 27 | 15 26 | eqtr4d | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( A + B ) = ( C + B ) ) |
| 28 | 1 | nn0cni | |- A e. CC |
| 29 | 3 | nn0cni | |- C e. CC |
| 30 | 28 29 22 | addcan2i | |- ( ( A + B ) = ( C + B ) <-> A = C ) |
| 31 | 27 30 | sylib | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> A = C ) |
| 32 | 31 25 | jca | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( A = C /\ B = D ) ) |
| 33 | oveq12 | |- ( ( A = C /\ B = D ) -> ( A + B ) = ( C + D ) ) |
|
| 34 | 33 33 | oveq12d | |- ( ( A = C /\ B = D ) -> ( ( A + B ) x. ( A + B ) ) = ( ( C + D ) x. ( C + D ) ) ) |
| 35 | simpr | |- ( ( A = C /\ B = D ) -> B = D ) |
|
| 36 | 34 35 | oveq12d | |- ( ( A = C /\ B = D ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
| 37 | 32 36 | impbii | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) <-> ( A = C /\ B = D ) ) |