This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnn0z.b | |- B = ( Base ` G ) |
|
| mulgnn0z.t | |- .x. = ( .g ` G ) |
||
| mulgnn0z.o | |- .0. = ( 0g ` G ) |
||
| Assertion | mulgz | |- ( ( G e. Grp /\ N e. ZZ ) -> ( N .x. .0. ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnn0z.b | |- B = ( Base ` G ) |
|
| 2 | mulgnn0z.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgnn0z.o | |- .0. = ( 0g ` G ) |
|
| 4 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 5 | 4 | adantr | |- ( ( G e. Grp /\ N e. ZZ ) -> G e. Mnd ) |
| 6 | 1 2 3 | mulgnn0z | |- ( ( G e. Mnd /\ N e. NN0 ) -> ( N .x. .0. ) = .0. ) |
| 7 | 5 6 | sylan | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ N e. NN0 ) -> ( N .x. .0. ) = .0. ) |
| 8 | simpll | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> G e. Grp ) |
|
| 9 | nn0z | |- ( -u N e. NN0 -> -u N e. ZZ ) |
|
| 10 | 9 | adantl | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> -u N e. ZZ ) |
| 11 | 1 3 | grpidcl | |- ( G e. Grp -> .0. e. B ) |
| 12 | 11 | ad2antrr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> .0. e. B ) |
| 13 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 14 | 1 2 13 | mulgneg | |- ( ( G e. Grp /\ -u N e. ZZ /\ .0. e. B ) -> ( -u -u N .x. .0. ) = ( ( invg ` G ) ` ( -u N .x. .0. ) ) ) |
| 15 | 8 10 12 14 | syl3anc | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( -u -u N .x. .0. ) = ( ( invg ` G ) ` ( -u N .x. .0. ) ) ) |
| 16 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 17 | 16 | ad2antlr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> N e. CC ) |
| 18 | 17 | negnegd | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> -u -u N = N ) |
| 19 | 18 | oveq1d | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( -u -u N .x. .0. ) = ( N .x. .0. ) ) |
| 20 | 1 2 3 | mulgnn0z | |- ( ( G e. Mnd /\ -u N e. NN0 ) -> ( -u N .x. .0. ) = .0. ) |
| 21 | 5 20 | sylan | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( -u N .x. .0. ) = .0. ) |
| 22 | 21 | fveq2d | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( ( invg ` G ) ` ( -u N .x. .0. ) ) = ( ( invg ` G ) ` .0. ) ) |
| 23 | 3 13 | grpinvid | |- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 24 | 23 | ad2antrr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 25 | 22 24 | eqtrd | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( ( invg ` G ) ` ( -u N .x. .0. ) ) = .0. ) |
| 26 | 15 19 25 | 3eqtr3d | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( N .x. .0. ) = .0. ) |
| 27 | elznn0 | |- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
|
| 28 | 27 | simprbi | |- ( N e. ZZ -> ( N e. NN0 \/ -u N e. NN0 ) ) |
| 29 | 28 | adantl | |- ( ( G e. Grp /\ N e. ZZ ) -> ( N e. NN0 \/ -u N e. NN0 ) ) |
| 30 | 7 26 29 | mpjaodan | |- ( ( G e. Grp /\ N e. ZZ ) -> ( N .x. .0. ) = .0. ) |