This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A df-neg -like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubcl.b | |- B = ( Base ` G ) |
|
| grpsubcl.m | |- .- = ( -g ` G ) |
||
| grpinvsub.n | |- N = ( invg ` G ) |
||
| grpinvval2.z | |- .0. = ( 0g ` G ) |
||
| Assertion | grpinvval2 | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) = ( .0. .- X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | |- B = ( Base ` G ) |
|
| 2 | grpsubcl.m | |- .- = ( -g ` G ) |
|
| 3 | grpinvsub.n | |- N = ( invg ` G ) |
|
| 4 | grpinvval2.z | |- .0. = ( 0g ` G ) |
|
| 5 | 1 4 | grpidcl | |- ( G e. Grp -> .0. e. B ) |
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | 1 6 3 2 | grpsubval | |- ( ( .0. e. B /\ X e. B ) -> ( .0. .- X ) = ( .0. ( +g ` G ) ( N ` X ) ) ) |
| 8 | 5 7 | sylan | |- ( ( G e. Grp /\ X e. B ) -> ( .0. .- X ) = ( .0. ( +g ` G ) ( N ` X ) ) ) |
| 9 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 10 | 1 6 4 | grplid | |- ( ( G e. Grp /\ ( N ` X ) e. B ) -> ( .0. ( +g ` G ) ( N ` X ) ) = ( N ` X ) ) |
| 11 | 9 10 | syldan | |- ( ( G e. Grp /\ X e. B ) -> ( .0. ( +g ` G ) ( N ` X ) ) = ( N ` X ) ) |
| 12 | 8 11 | eqtr2d | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) = ( .0. .- X ) ) |