This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hasheni | |- ( A ~~ B -> ( # ` A ) = ( # ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A ~~ B /\ B e. Fin ) -> A ~~ B ) |
|
| 2 | enfii | |- ( ( B e. Fin /\ A ~~ B ) -> A e. Fin ) |
|
| 3 | 2 | ancoms | |- ( ( A ~~ B /\ B e. Fin ) -> A e. Fin ) |
| 4 | hashen | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |
|
| 5 | 3 4 | sylancom | |- ( ( A ~~ B /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |
| 6 | 1 5 | mpbird | |- ( ( A ~~ B /\ B e. Fin ) -> ( # ` A ) = ( # ` B ) ) |
| 7 | relen | |- Rel ~~ |
|
| 8 | 7 | brrelex1i | |- ( A ~~ B -> A e. _V ) |
| 9 | enfi | |- ( A ~~ B -> ( A e. Fin <-> B e. Fin ) ) |
|
| 10 | 9 | notbid | |- ( A ~~ B -> ( -. A e. Fin <-> -. B e. Fin ) ) |
| 11 | 10 | biimpar | |- ( ( A ~~ B /\ -. B e. Fin ) -> -. A e. Fin ) |
| 12 | hashinf | |- ( ( A e. _V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
|
| 13 | 8 11 12 | syl2an2r | |- ( ( A ~~ B /\ -. B e. Fin ) -> ( # ` A ) = +oo ) |
| 14 | 7 | brrelex2i | |- ( A ~~ B -> B e. _V ) |
| 15 | hashinf | |- ( ( B e. _V /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
|
| 16 | 14 15 | sylan | |- ( ( A ~~ B /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
| 17 | 13 16 | eqtr4d | |- ( ( A ~~ B /\ -. B e. Fin ) -> ( # ` A ) = ( # ` B ) ) |
| 18 | 6 17 | pm2.61dan | |- ( A ~~ B -> ( # ` A ) = ( # ` B ) ) |