This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element has nonzero order, it generates a subgroup with size equal to the order. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odhash.x | |- X = ( Base ` G ) |
|
| odhash.o | |- O = ( od ` G ) |
||
| odhash.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| Assertion | odhash2 | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( # ` ( K ` { A } ) ) = ( O ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odhash.x | |- X = ( Base ` G ) |
|
| 2 | odhash.o | |- O = ( od ` G ) |
|
| 3 | odhash.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 4 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 5 | 1 4 2 3 | odf1o2 | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( x e. ( 0 ..^ ( O ` A ) ) |-> ( x ( .g ` G ) A ) ) : ( 0 ..^ ( O ` A ) ) -1-1-onto-> ( K ` { A } ) ) |
| 6 | ovex | |- ( 0 ..^ ( O ` A ) ) e. _V |
|
| 7 | 6 | f1oen | |- ( ( x e. ( 0 ..^ ( O ` A ) ) |-> ( x ( .g ` G ) A ) ) : ( 0 ..^ ( O ` A ) ) -1-1-onto-> ( K ` { A } ) -> ( 0 ..^ ( O ` A ) ) ~~ ( K ` { A } ) ) |
| 8 | hasheni | |- ( ( 0 ..^ ( O ` A ) ) ~~ ( K ` { A } ) -> ( # ` ( 0 ..^ ( O ` A ) ) ) = ( # ` ( K ` { A } ) ) ) |
|
| 9 | 5 7 8 | 3syl | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( # ` ( 0 ..^ ( O ` A ) ) ) = ( # ` ( K ` { A } ) ) ) |
| 10 | 1 2 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 11 | 10 | 3ad2ant2 | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( O ` A ) e. NN0 ) |
| 12 | hashfzo0 | |- ( ( O ` A ) e. NN0 -> ( # ` ( 0 ..^ ( O ` A ) ) ) = ( O ` A ) ) |
|
| 13 | 11 12 | syl | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( # ` ( 0 ..^ ( O ` A ) ) ) = ( O ` A ) ) |
| 14 | 9 13 | eqtr3d | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( # ` ( K ` { A } ) ) = ( O ` A ) ) |