This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime not equal to 2 is an odd positive integer. (Contributed by AV, 28-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnoddn2prm | |- ( N e. ( Prime \ { 2 } ) -> ( N e. NN /\ -. 2 || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | |- ( N e. ( Prime \ { 2 } ) -> N e. Prime ) |
|
| 2 | prmnn | |- ( N e. Prime -> N e. NN ) |
|
| 3 | 1 2 | syl | |- ( N e. ( Prime \ { 2 } ) -> N e. NN ) |
| 4 | oddprm | |- ( N e. ( Prime \ { 2 } ) -> ( ( N - 1 ) / 2 ) e. NN ) |
|
| 5 | nnz | |- ( ( ( N - 1 ) / 2 ) e. NN -> ( ( N - 1 ) / 2 ) e. ZZ ) |
|
| 6 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 7 | oddm1d2 | |- ( N e. ZZ -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
|
| 8 | 6 7 | syl | |- ( N e. NN -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 9 | 5 8 | syl5ibrcom | |- ( ( ( N - 1 ) / 2 ) e. NN -> ( N e. NN -> -. 2 || N ) ) |
| 10 | 4 9 | syl | |- ( N e. ( Prime \ { 2 } ) -> ( N e. NN -> -. 2 || N ) ) |
| 11 | 3 10 | jcai | |- ( N e. ( Prime \ { 2 } ) -> ( N e. NN /\ -. 2 || N ) ) |