This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dflim3 | |- ( Lim A <-> ( Ord A /\ -. ( A = (/) \/ E. x e. On A = suc x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim | |- ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) ) |
|
| 2 | 3anass | |- ( ( Ord A /\ A =/= (/) /\ A = U. A ) <-> ( Ord A /\ ( A =/= (/) /\ A = U. A ) ) ) |
|
| 3 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 4 | 3 | a1i | |- ( Ord A -> ( A =/= (/) <-> -. A = (/) ) ) |
| 5 | orduninsuc | |- ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
|
| 6 | 4 5 | anbi12d | |- ( Ord A -> ( ( A =/= (/) /\ A = U. A ) <-> ( -. A = (/) /\ -. E. x e. On A = suc x ) ) ) |
| 7 | ioran | |- ( -. ( A = (/) \/ E. x e. On A = suc x ) <-> ( -. A = (/) /\ -. E. x e. On A = suc x ) ) |
|
| 8 | 6 7 | bitr4di | |- ( Ord A -> ( ( A =/= (/) /\ A = U. A ) <-> -. ( A = (/) \/ E. x e. On A = suc x ) ) ) |
| 9 | 8 | pm5.32i | |- ( ( Ord A /\ ( A =/= (/) /\ A = U. A ) ) <-> ( Ord A /\ -. ( A = (/) \/ E. x e. On A = suc x ) ) ) |
| 10 | 1 2 9 | 3bitri | |- ( Lim A <-> ( Ord A /\ -. ( A = (/) \/ E. x e. On A = suc x ) ) ) |