This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal sum is zero iff both of its arguments are zero. Lemma 3.10 of Schloeder p. 8. (Contributed by NM, 6-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oa00 | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) <-> ( A = (/) /\ B = (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on0eln0 | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. On /\ B e. On ) -> ( (/) e. A <-> A =/= (/) ) ) |
| 3 | oaword1 | |- ( ( A e. On /\ B e. On ) -> A C_ ( A +o B ) ) |
|
| 4 | 3 | sseld | |- ( ( A e. On /\ B e. On ) -> ( (/) e. A -> (/) e. ( A +o B ) ) ) |
| 5 | 2 4 | sylbird | |- ( ( A e. On /\ B e. On ) -> ( A =/= (/) -> (/) e. ( A +o B ) ) ) |
| 6 | ne0i | |- ( (/) e. ( A +o B ) -> ( A +o B ) =/= (/) ) |
|
| 7 | 5 6 | syl6 | |- ( ( A e. On /\ B e. On ) -> ( A =/= (/) -> ( A +o B ) =/= (/) ) ) |
| 8 | 7 | necon4d | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) -> A = (/) ) ) |
| 9 | on0eln0 | |- ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) |
|
| 10 | 9 | adantl | |- ( ( A e. On /\ B e. On ) -> ( (/) e. B <-> B =/= (/) ) ) |
| 11 | 0elon | |- (/) e. On |
|
| 12 | oaord | |- ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) |
|
| 13 | 11 12 | mp3an1 | |- ( ( B e. On /\ A e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) |
| 14 | 13 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) |
| 15 | 10 14 | bitr3d | |- ( ( A e. On /\ B e. On ) -> ( B =/= (/) <-> ( A +o (/) ) e. ( A +o B ) ) ) |
| 16 | ne0i | |- ( ( A +o (/) ) e. ( A +o B ) -> ( A +o B ) =/= (/) ) |
|
| 17 | 15 16 | biimtrdi | |- ( ( A e. On /\ B e. On ) -> ( B =/= (/) -> ( A +o B ) =/= (/) ) ) |
| 18 | 17 | necon4d | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) -> B = (/) ) ) |
| 19 | 8 18 | jcad | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) -> ( A = (/) /\ B = (/) ) ) ) |
| 20 | oveq12 | |- ( ( A = (/) /\ B = (/) ) -> ( A +o B ) = ( (/) +o (/) ) ) |
|
| 21 | oa0 | |- ( (/) e. On -> ( (/) +o (/) ) = (/) ) |
|
| 22 | 11 21 | ax-mp | |- ( (/) +o (/) ) = (/) |
| 23 | 20 22 | eqtrdi | |- ( ( A = (/) /\ B = (/) ) -> ( A +o B ) = (/) ) |
| 24 | 19 23 | impbid1 | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) <-> ( A = (/) /\ B = (/) ) ) ) |