This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal addition. (Contributed by NM, 6-Dec-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaword | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B <-> ( C +o A ) C_ ( C +o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oaord | |- ( ( B e. On /\ A e. On /\ C e. On ) -> ( B e. A <-> ( C +o B ) e. ( C +o A ) ) ) |
|
| 2 | 1 | 3com12 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. A <-> ( C +o B ) e. ( C +o A ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( -. B e. A <-> -. ( C +o B ) e. ( C +o A ) ) ) |
| 4 | ontri1 | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> -. B e. A ) ) |
|
| 5 | 4 | 3adant3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B <-> -. B e. A ) ) |
| 6 | oacl | |- ( ( C e. On /\ A e. On ) -> ( C +o A ) e. On ) |
|
| 7 | 6 | ancoms | |- ( ( A e. On /\ C e. On ) -> ( C +o A ) e. On ) |
| 8 | 7 | 3adant2 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( C +o A ) e. On ) |
| 9 | oacl | |- ( ( C e. On /\ B e. On ) -> ( C +o B ) e. On ) |
|
| 10 | 9 | ancoms | |- ( ( B e. On /\ C e. On ) -> ( C +o B ) e. On ) |
| 11 | 10 | 3adant1 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( C +o B ) e. On ) |
| 12 | ontri1 | |- ( ( ( C +o A ) e. On /\ ( C +o B ) e. On ) -> ( ( C +o A ) C_ ( C +o B ) <-> -. ( C +o B ) e. ( C +o A ) ) ) |
|
| 13 | 8 11 12 | syl2anc | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C +o A ) C_ ( C +o B ) <-> -. ( C +o B ) e. ( C +o A ) ) ) |
| 14 | 3 5 13 | 3bitr4d | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B <-> ( C +o A ) C_ ( C +o B ) ) ) |