This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmval.1 | |- X = ( BaseSet ` U ) |
|
| nvmval.2 | |- G = ( +v ` U ) |
||
| nvmval.4 | |- S = ( .sOLD ` U ) |
||
| nvmval.3 | |- M = ( -v ` U ) |
||
| Assertion | nvmfval | |- ( U e. NrmCVec -> M = ( x e. X , y e. X |-> ( x G ( -u 1 S y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvmval.2 | |- G = ( +v ` U ) |
|
| 3 | nvmval.4 | |- S = ( .sOLD ` U ) |
|
| 4 | nvmval.3 | |- M = ( -v ` U ) |
|
| 5 | 2 | nvgrp | |- ( U e. NrmCVec -> G e. GrpOp ) |
| 6 | 1 2 | bafval | |- X = ran G |
| 7 | eqid | |- ( inv ` G ) = ( inv ` G ) |
|
| 8 | 2 4 | vsfval | |- M = ( /g ` G ) |
| 9 | 6 7 8 | grpodivfval | |- ( G e. GrpOp -> M = ( x e. X , y e. X |-> ( x G ( ( inv ` G ) ` y ) ) ) ) |
| 10 | 5 9 | syl | |- ( U e. NrmCVec -> M = ( x e. X , y e. X |-> ( x G ( ( inv ` G ) ` y ) ) ) ) |
| 11 | 1 2 3 7 | nvinv | |- ( ( U e. NrmCVec /\ y e. X ) -> ( -u 1 S y ) = ( ( inv ` G ) ` y ) ) |
| 12 | 11 | 3adant2 | |- ( ( U e. NrmCVec /\ x e. X /\ y e. X ) -> ( -u 1 S y ) = ( ( inv ` G ) ` y ) ) |
| 13 | 12 | oveq2d | |- ( ( U e. NrmCVec /\ x e. X /\ y e. X ) -> ( x G ( -u 1 S y ) ) = ( x G ( ( inv ` G ) ` y ) ) ) |
| 14 | 13 | mpoeq3dva | |- ( U e. NrmCVec -> ( x e. X , y e. X |-> ( x G ( -u 1 S y ) ) ) = ( x e. X , y e. X |-> ( x G ( ( inv ` G ) ` y ) ) ) ) |
| 15 | 10 14 | eqtr4d | |- ( U e. NrmCVec -> M = ( x e. X , y e. X |-> ( x G ( -u 1 S y ) ) ) ) |