This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvmval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nvmval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvmval.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| Assertion | nvmfval | ⊢ ( 𝑈 ∈ NrmCVec → 𝑀 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvmval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nvmval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | nvmval.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 5 | 2 | nvgrp | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp ) |
| 6 | 1 2 | bafval | ⊢ 𝑋 = ran 𝐺 |
| 7 | eqid | ⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) | |
| 8 | 2 4 | vsfval | ⊢ 𝑀 = ( /𝑔 ‘ 𝐺 ) |
| 9 | 6 7 8 | grpodivfval | ⊢ ( 𝐺 ∈ GrpOp → 𝑀 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 10 | 5 9 | syl | ⊢ ( 𝑈 ∈ NrmCVec → 𝑀 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 11 | 1 2 3 7 | nvinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) = ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) = ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 14 | 13 | mpoeq3dva | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 15 | 10 14 | eqtr4d | ⊢ ( 𝑈 ∈ NrmCVec → 𝑀 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |