This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping for the vector subtraction operation. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmf.1 | |- X = ( BaseSet ` U ) |
|
| nvmf.3 | |- M = ( -v ` U ) |
||
| Assertion | nvmf | |- ( U e. NrmCVec -> M : ( X X. X ) --> X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmf.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvmf.3 | |- M = ( -v ` U ) |
|
| 3 | simpl | |- ( ( U e. NrmCVec /\ ( x e. X /\ y e. X ) ) -> U e. NrmCVec ) |
|
| 4 | simprl | |- ( ( U e. NrmCVec /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
|
| 5 | neg1cn | |- -u 1 e. CC |
|
| 6 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 7 | 1 6 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ y e. X ) -> ( -u 1 ( .sOLD ` U ) y ) e. X ) |
| 8 | 5 7 | mp3an2 | |- ( ( U e. NrmCVec /\ y e. X ) -> ( -u 1 ( .sOLD ` U ) y ) e. X ) |
| 9 | 8 | adantrl | |- ( ( U e. NrmCVec /\ ( x e. X /\ y e. X ) ) -> ( -u 1 ( .sOLD ` U ) y ) e. X ) |
| 10 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 11 | 1 10 | nvgcl | |- ( ( U e. NrmCVec /\ x e. X /\ ( -u 1 ( .sOLD ` U ) y ) e. X ) -> ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) e. X ) |
| 12 | 3 4 9 11 | syl3anc | |- ( ( U e. NrmCVec /\ ( x e. X /\ y e. X ) ) -> ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) e. X ) |
| 13 | 12 | ralrimivva | |- ( U e. NrmCVec -> A. x e. X A. y e. X ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) e. X ) |
| 14 | eqid | |- ( x e. X , y e. X |-> ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) ) = ( x e. X , y e. X |-> ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) ) |
|
| 15 | 14 | fmpo | |- ( A. x e. X A. y e. X ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) e. X <-> ( x e. X , y e. X |-> ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) ) : ( X X. X ) --> X ) |
| 16 | 13 15 | sylib | |- ( U e. NrmCVec -> ( x e. X , y e. X |-> ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) ) : ( X X. X ) --> X ) |
| 17 | 1 10 6 2 | nvmfval | |- ( U e. NrmCVec -> M = ( x e. X , y e. X |-> ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) ) ) |
| 18 | 17 | feq1d | |- ( U e. NrmCVec -> ( M : ( X X. X ) --> X <-> ( x e. X , y e. X |-> ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) ) : ( X X. X ) --> X ) ) |
| 19 | 16 18 | mpbird | |- ( U e. NrmCVec -> M : ( X X. X ) --> X ) |