This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdiv.1 | |- X = ran G |
|
| grpdiv.2 | |- N = ( inv ` G ) |
||
| grpdiv.3 | |- D = ( /g ` G ) |
||
| Assertion | grpodivfval | |- ( G e. GrpOp -> D = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.1 | |- X = ran G |
|
| 2 | grpdiv.2 | |- N = ( inv ` G ) |
|
| 3 | grpdiv.3 | |- D = ( /g ` G ) |
|
| 4 | rnexg | |- ( G e. GrpOp -> ran G e. _V ) |
|
| 5 | 1 4 | eqeltrid | |- ( G e. GrpOp -> X e. _V ) |
| 6 | mpoexga | |- ( ( X e. _V /\ X e. _V ) -> ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) e. _V ) |
|
| 7 | 5 5 6 | syl2anc | |- ( G e. GrpOp -> ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) e. _V ) |
| 8 | rneq | |- ( g = G -> ran g = ran G ) |
|
| 9 | 8 1 | eqtr4di | |- ( g = G -> ran g = X ) |
| 10 | id | |- ( g = G -> g = G ) |
|
| 11 | eqidd | |- ( g = G -> x = x ) |
|
| 12 | fveq2 | |- ( g = G -> ( inv ` g ) = ( inv ` G ) ) |
|
| 13 | 12 2 | eqtr4di | |- ( g = G -> ( inv ` g ) = N ) |
| 14 | 13 | fveq1d | |- ( g = G -> ( ( inv ` g ) ` y ) = ( N ` y ) ) |
| 15 | 10 11 14 | oveq123d | |- ( g = G -> ( x g ( ( inv ` g ) ` y ) ) = ( x G ( N ` y ) ) ) |
| 16 | 9 9 15 | mpoeq123dv | |- ( g = G -> ( x e. ran g , y e. ran g |-> ( x g ( ( inv ` g ) ` y ) ) ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |
| 17 | df-gdiv | |- /g = ( g e. GrpOp |-> ( x e. ran g , y e. ran g |-> ( x g ( ( inv ` g ) ` y ) ) ) ) |
|
| 18 | 16 17 | fvmptg | |- ( ( G e. GrpOp /\ ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) e. _V ) -> ( /g ` G ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |
| 19 | 7 18 | mpdan | |- ( G e. GrpOp -> ( /g ` G ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |
| 20 | 3 19 | eqtrid | |- ( G e. GrpOp -> D = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |