This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 27-Dec-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vsfval.2 | |- G = ( +v ` U ) |
|
| vsfval.3 | |- M = ( -v ` U ) |
||
| Assertion | vsfval | |- M = ( /g ` G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsfval.2 | |- G = ( +v ` U ) |
|
| 2 | vsfval.3 | |- M = ( -v ` U ) |
|
| 3 | df-vs | |- -v = ( /g o. +v ) |
|
| 4 | 3 | fveq1i | |- ( -v ` U ) = ( ( /g o. +v ) ` U ) |
| 5 | fo1st | |- 1st : _V -onto-> _V |
|
| 6 | fof | |- ( 1st : _V -onto-> _V -> 1st : _V --> _V ) |
|
| 7 | 5 6 | ax-mp | |- 1st : _V --> _V |
| 8 | fco | |- ( ( 1st : _V --> _V /\ 1st : _V --> _V ) -> ( 1st o. 1st ) : _V --> _V ) |
|
| 9 | 7 7 8 | mp2an | |- ( 1st o. 1st ) : _V --> _V |
| 10 | df-va | |- +v = ( 1st o. 1st ) |
|
| 11 | 10 | feq1i | |- ( +v : _V --> _V <-> ( 1st o. 1st ) : _V --> _V ) |
| 12 | 9 11 | mpbir | |- +v : _V --> _V |
| 13 | fvco3 | |- ( ( +v : _V --> _V /\ U e. _V ) -> ( ( /g o. +v ) ` U ) = ( /g ` ( +v ` U ) ) ) |
|
| 14 | 12 13 | mpan | |- ( U e. _V -> ( ( /g o. +v ) ` U ) = ( /g ` ( +v ` U ) ) ) |
| 15 | 4 14 | eqtrid | |- ( U e. _V -> ( -v ` U ) = ( /g ` ( +v ` U ) ) ) |
| 16 | 0ngrp | |- -. (/) e. GrpOp |
|
| 17 | vex | |- g e. _V |
|
| 18 | 17 | rnex | |- ran g e. _V |
| 19 | 18 18 | mpoex | |- ( x e. ran g , y e. ran g |-> ( x g ( ( inv ` g ) ` y ) ) ) e. _V |
| 20 | df-gdiv | |- /g = ( g e. GrpOp |-> ( x e. ran g , y e. ran g |-> ( x g ( ( inv ` g ) ` y ) ) ) ) |
|
| 21 | 19 20 | dmmpti | |- dom /g = GrpOp |
| 22 | 21 | eleq2i | |- ( (/) e. dom /g <-> (/) e. GrpOp ) |
| 23 | 16 22 | mtbir | |- -. (/) e. dom /g |
| 24 | ndmfv | |- ( -. (/) e. dom /g -> ( /g ` (/) ) = (/) ) |
|
| 25 | 23 24 | mp1i | |- ( -. U e. _V -> ( /g ` (/) ) = (/) ) |
| 26 | fvprc | |- ( -. U e. _V -> ( +v ` U ) = (/) ) |
|
| 27 | 26 | fveq2d | |- ( -. U e. _V -> ( /g ` ( +v ` U ) ) = ( /g ` (/) ) ) |
| 28 | fvprc | |- ( -. U e. _V -> ( -v ` U ) = (/) ) |
|
| 29 | 25 27 28 | 3eqtr4rd | |- ( -. U e. _V -> ( -v ` U ) = ( /g ` ( +v ` U ) ) ) |
| 30 | 15 29 | pm2.61i | |- ( -v ` U ) = ( /g ` ( +v ` U ) ) |
| 31 | 1 | fveq2i | |- ( /g ` G ) = ( /g ` ( +v ` U ) ) |
| 32 | 30 2 31 | 3eqtr4i | |- M = ( /g ` G ) |