This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of Kreyszig p. 51. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvinv.1 | |- X = ( BaseSet ` U ) |
|
| nvinv.2 | |- G = ( +v ` U ) |
||
| nvinv.4 | |- S = ( .sOLD ` U ) |
||
| nvinv.5 | |- M = ( inv ` G ) |
||
| Assertion | nvinv | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S A ) = ( M ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvinv.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvinv.2 | |- G = ( +v ` U ) |
|
| 3 | nvinv.4 | |- S = ( .sOLD ` U ) |
|
| 4 | nvinv.5 | |- M = ( inv ` G ) |
|
| 5 | eqid | |- ( 1st ` U ) = ( 1st ` U ) |
|
| 6 | 5 | nvvc | |- ( U e. NrmCVec -> ( 1st ` U ) e. CVecOLD ) |
| 7 | 2 | vafval | |- G = ( 1st ` ( 1st ` U ) ) |
| 8 | 3 | smfval | |- S = ( 2nd ` ( 1st ` U ) ) |
| 9 | 1 2 | bafval | |- X = ran G |
| 10 | 7 8 9 4 | vcm | |- ( ( ( 1st ` U ) e. CVecOLD /\ A e. X ) -> ( -u 1 S A ) = ( M ` A ) ) |
| 11 | 6 10 | sylan | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S A ) = ( M ` A ) ) |